I am a
Home I AM A Search Login

Human Studies

Share this

Association between migraine frequency and neural response to emotional faces: An fMRI study.

Previous studies have demonstrated that migraine is associated with enhanced perception and altered cerebral processing of sensory stimuli. More recently, it has been suggested that this sensory hypersensitivity might reflect a more general enhanced response to aversive emotional stimuli. Using functional magnetic resonance imaging and emotional face stimuli (fearful, happy and sad faces), we compared whole-brain activation between 41 migraine patients without aura in interictal period and 49 healthy controls. Migraine patients showed increased neural activation to fearful faces compared to neutral faces in the right middle frontal gyrus and frontal pole relative to healthy controls. We also found that higher attack frequency in migraine patients was related to increased activation mainly in the right primary somatosensory cortex (corresponding to the face area) to fearful expressions and in the right dorsal striatal regions to happy faces. In both analyses, activation differences remained significant after controlling for anxiety and depressive symptoms. These findings indicate that enhanced response to emotional stimuli might explain the migraine trigger effect of psychosocial stressors that gradually leads to increased somatosensory response to emotional clues and thus contributes to the progression or chronification of migraine.

Learn More >

Dependence of Neuroprosthetic Stimulation on the Sensory Modality of the Trigeminal Neurons Following Nerve Injury. Implications in the Design of Future Sensory Neuroprostheses for Correct Perception and Modulation of Neuropathic Pain.

Amputation of a sensory peripheral nerve induces severe anatomical and functional changes along the afferent pathway as well as perception alterations and neuropathic pain. In previous studies we showed that electrical stimulation applied to a transected infraorbital nerve protects the somatosensory cortex from the above-mentioned sensory deprivation-related changes. In the present study we focus on the initial tract of the somatosensory pathway and we investigate the way weak electrical stimulation modulates the neuroprotective-neuroregenerative and functional processes of trigeminal ganglia primary sensory neurons by studying the expression of neurotrophins (NTFs) and Glia-Derived Neurotrophic Factors (GDNFs) receptors. Neurostimulation was applied to the proximal stump of a transected left infraorbitary nerve using a neuroprosthetic micro-device 12 h/day for 4 weeks in freely behaving rats. Neurons were studied by hybridization and immunohistochemistry against RET (proto-oncogene tyrosine kinase "rearranged during transfection"), tropomyosin-related kinases (TrkA, TrkB, TrkC) receptors and IB4 (Isolectin B4 from Griffonia simplicifolia). Intra-group (left vs. right ganglia) and inter-group comparisons (between Control, Axotomization and Stimulation-after-axotomization groups) were performed using the mean percentage change of the number of positive cells per section [100(left-right)/right)]. Intra-group differences were studied by paired -tests. For inter-group comparisons ANOVA test followed by LSD test (when < 0.05) were used. Significance level (α) was set to 0.05 in all cases. Results showed that (i) neurostimulation has heterogeneous effects on primary nociceptive and mechanoceptive/proprioceptive neurons; (ii) neurostimulation affects RET-expressing small and large neurons which include thermo-nociceptors and mechanoceptors, as well as on the IB4- and TrkB-positive populations, which mainly correspond to non-peptidergic thermo-nociceptive cells and mechanoceptors respectively. Our results suggest (i) electrical stimulation differentially affects modality-specific primary sensory neurons (ii) artificial input mainly acts on specific nociceptive and mechanoceptive neurons (iii) neuroprosthetic stimulation could be used to modulate peripheral nerve injuries-induced neuropathic pain. These could have important functional implications in both, the design of effective clinical neurostimulation-based protocols and the development of neuroprosthetic devices, controlling primary sensory neurons through selective neurostimulation.

Learn More >

The Nordic Maintenance Care Program: Does psychological profile modify the treatment effect of a preventive manual therapy intervention? A secondary analysis of a pragmatic randomized controlled trial.

Chiropractic maintenance care is effective as secondary/tertiary prevention of non-specific low back pain (LBP), but the potential effect moderation by psychological characteristics is unknown. The objective was to investigate whether patients in specific psychological sub-groups had different responses to MC with regard to the total number of days with bothersome pain and the number of treatments.

Learn More >

Is the discopathy associated with Modic changes an infectious process? Results from a prospective monocenter study.

The local infectious origin and the putative role of Cutibacterium acnes (CA) of a particular subtype of discopathy (Modic 1) are still debated.

Learn More >

General strength and conditioning versus motor control with manual therapy for improving depressive symptoms in chronic low back pain: A randomised feasibility trial.

Exercise can be used as a treatment for depressive symptoms in the general population. However, little is known as to whether exercise has mental health benefits for adults experiencing chronic low back pain (CLBP). The aim of this study was to examine the feasibility of two intervention protocols commonly used in clinical practice for treating chronic low back pain, but with differing exercise dose, on depressive symptoms.

Learn More >

Analgesic Effects of Compression at Trigger Points Are Associated With Reduction of Frontal Polar Cortical Activity as Well as Functional Connectivity Between the Frontal Polar Area and Insula in Patients With Chronic Low Back Pain: A Randomized Trial.

Compression of myofascial trigger points (MTrPs) in muscles is reported to reduce chronic musculoskeletal pain. Although the prefrontal cortex (PFC) is implicated in development of chronic pain, the mechanisms of how MTrP compression at low back regions affects PFC activity remain under debate. In this study, we investigated effects of MTrP compression on brain hemodynamics and EEG oscillation in subjects with chronic low back pain.

Learn More >

Factors associated with persistently high-cost health care utilization for musculoskeletal pain.

Musculoskeletal pain conditions incur high costs and produce significant personal and public health consequences, including disability and opioid-related mortality. Persistence of high-cost health care utilization for musculoskeletal pain may help identify system inefficiencies that could limit value of care. The objective of this study was to identify factors associated with persistent high-cost utilization among individuals seeking health care for musculoskeletal pain.

Learn More >

Pain symptomology, functional impact, and treatment of people with Neurofibromatosis type 1.

Neurofibromatosis type 1 (NF1) is a neurogenetic disorder affecting 1 in 3000 people worldwide, where individuals are prone to develop benign and malignant tumors. In addition, many people with NF1 complain of pain that limits their daily functioning. Due to the complexity of the disorder, there are few options for treating pain symptoms besides surgery and medications. Moreover, the spectrum of pain symptomatology and treatment, as well as the mechanisms underlying NF1-associated pain, has been understudied.

Learn More >

Avoidance Behavioral Difference in Acquisition and Extinction of Pain-Related Fear.

Fear of movement-related pain leads to two types of avoidance behavior: excessive avoidance and pain-inhibited movement. Excessive avoidance is an absence of movement by fear, and pain-inhibited movements involve a change in motor behavior for the purpose of protecting the painful part. Here, we sought to clarify the acquisition process and adaptation of fear for each avoidance behavior. Thirty-one female and 13 male (age 20.9 ± 2.1 years) subjects could decide persistent behaviors: approach with an intense pain stimulus, pain-inhibited movement with weak pain stimulus, or excessive avoidance with no pain in acquisition and test phases. In the subsequent extinction phase, the pain stimulus was omitted. Subjects were divided into an approach group ( = 24), a pain-inhibited movement group ( = 10), and an excessive avoidance group ( = 10) by cluster analysis. The response latencies in approach and pain-inhibited movement groups were not affected by conditioned pain. The subjects in the excessive avoidance group exhibited delayed response latencies, and their high-fear responses remained in the acquisition, test, and extinction phases. In addition, the excessive avoidance group showed high harm avoidance and high trait anxiety. This study demonstrated that differences in pain-related avoidance behaviors are affected by psychological traits. Pain-related excessive avoidance behavior indicated a maladaptive fear, but pain-inhibited movement did not.

Learn More >

Altered Resting State Functional Activity and Microstructure of the White Matter in Migraine With Aura.

Brain structure and function were reported to be altered in migraine. Importantly our earlier results showed that white matter diffusion abnormalities and resting state functional activity were affected differently in the two subtypes of the disease, migraine with and without aura. Resting fluctuation of the BOLD signal in the white matter was reported recently. The question arising whether the white matter activity, that is strongly coupled with gray matter activity is also perturbed differentially in the two subtypes of the disease and if so, is it related to the microstructural alterations of the white matter. Resting state fMRI, 60 directional DTI images and high-resolution T1 images were obtained from 51 migraine patients and 32 healthy volunteers. The images were pre-processed and the white matter was extracted. Independent component analysis was performed to obtain white matter functional networks. The differential expression of the white matter functional networks in the two subtypes of the disease was investigated with dual-regression approach. The Fourier spectrum of the resting fMRI fluctuations were compared between groups. Voxel-wise correlation was calculated between the resting state functional activity fluctuations and white matter microstructural measures. Three white matter networks were identified that were expressed differently in migraine with and without aura. Migraineurs with aura showed increased functional connectivity and amplitude of BOLD fluctuation. Fractional anisotropy and radial diffusivity showed strong correlation with the expression of the frontal white matter network in patients with aura. Our study is the first to describe changes in white matter resting state functional activity in migraine with aura, showing correlation with the underlying microstructure. Functional and structural differences between disease subtypes suggest at least partially different pathomechanism, which may necessitate handling of these subtypes as separate entities in further studies.

Learn More >

Search