I am a
Home I AM A Search Login

Human Studies

Share this

Cranial autonomic symptoms: prevalence, phenotype and laterality in migraine and two potentially new symptoms.

Whilst cranial autonomic symptoms (CAS) are typically associated with trigeminal autonomic cephalalgias (TAC's), they have also been reported in migraine. Identification and understanding of these symptoms in migraine is important to ensure timely diagnosis and effective management.

Learn More >

[The new Parkinson’s disease pain classification system (PD-PCS)].

Chronic pain is a common non-motor symptom in patients with Parkinson's disease (PD).

Learn More >

Racial and ethnic disparities in surgical care for endometriosis across the United States.

Despite an estimated 10% prevalence of endometriosis among reproductive-age women, surgical population-based data is limited.

Learn More >

Mild Skin Heating Evokes Warmth Hyperknesis Selectively for Histaminergic and Serotoninergic Itch in Humans.

Chronic itch can severely affect quality of life. Patients report that their chronic itch can be exacerbated by exposure to warm conditions ("warmth hyperknesis"). The aim of this mechanistic study was to investigate the effect of mild heating of the skin in humans on various experimental models of itch. A total of 18 healthy subjects were recruited to the study. Itch was provoked by histamine, serotonin, or cowhage in 3 different sessions. The provoked area was heated with an infrared lamp, and the skin temperature was either not altered, or was increased by 4°C or 7°C. Subsequent to induction of itch, the itch intensity was recorded for 10 min while the skin was heated continuously throughout the entire period of itch induction. Heating the skin resulted in a significant increase in itch intensity when provoked by histamine or serotonin. It is possible that thermoception and pruriception interact and selectively produce a higher itch intensity in histaminergic and serotoninergic itch.

Learn More >

Effects of rTMS and tDCS on neuropathic pain after brachial plexus injury: a randomized placebo-controlled pilot study.

Neuropathic pain after brachial plexus injury (NPBPI) is a highly disabling clinical condition and is increasingly prevalent due to increased motorcycle accidents. Currently, no randomized controlled trials have evaluated the effectiveness of non-invasive brain stimulation techniques such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS) in patients suffering from NPBPI. In this study, we directly compare the efficacy of 10-Hz rTMS and anodal 2 mA tDCS techniques applied over the motor cortex (5 daily consecutive sessions) in 20 patients with NPBPI, allocated into 2 parallel groups (active or sham). The order of the sessions was randomised for each of these treatment groups according to a crossover design and separated by a 30-day interval. Scores for "continuous" and "paroxysmal" pain (primary outcome) were tabulated after the last stimulation day and 30 days after. Secondary outcomes included the improvement in multidimensional aspects of pain, anxiety state and quality of life from a qualitative and quantitative approach. Active rTMS and tDCS were both superior to sham in reducing continuous (p < 0.001) and paroxysmal (p = 0.002; p = 0.02) pain as well as in multidimensional aspects of pain (p = 0.001; p = 0.002) and anxiety state (p =  < 0.001; p = 0.005). Our results suggest rTMS and tDCS are able to treat NPBPI with little distinction in pain and anxiety state, which may promote the use of tDCS in brachial plexus injury pain management, as it constitutes an easier and more available technique.Clinical Trial Registration: http://www.ensaiosclinicos.gov.br/, RBR-5xnjbc – Sep 3, 2018.

Learn More >

EEG theta and beta bands as brain oscillations for different knee osteoarthritis phenotypes according to disease severity.

This study aims to investigate the multivariate relationship between different sociodemographic, clinical, and neurophysiological variables with resting-state, high-definition, EEG spectral power in subjects with chronic knee osteoarthritis (OA) pain. This was a cross-sectional study. Sociodemographic and clinical data were collected from 66 knee OA subjects. To identify associated factors, we performed independent univariate and multivariate regression models by frequency bands (delta, theta, alpha, beta, low-beta, and high-beta) and by pre-defined regions (frontal, central, and parietal). From adjusted multivariate models, we found that: (1) increased frontocentral high-beta power and reduced central theta activity are positively correlated with pain intensity (β = 0.012, 95% CI 0.004-0.020; and β = - 0.008; 95% CI 0.014 to - 0.003; respectively); (2) delta and alpha oscillations have a direct relationship with higher cortical inhibition; (3) diffuse increased power at low frequencies (delta and theta) are associated with poor cognition, aging, and depressive symptoms; and (4) higher alpha and beta power over sensorimotor areas seem to be a maladaptive compensatory mechanism to poor motor function and severe joint degeneration. Subjects with higher pain intensity and higher OA severity (likely subjects with maladaptive compensatory mechanisms to severe OA) have higher frontocentral beta power and lower theta activity. On the other hand, subjects with less OA severity and less pain have higher theta oscillations power. These associations showed the potential role of brain oscillations as a marker of pain intensity and clinical phenotypes in chronic knee OA patients. Besides, they suggest a potential compensatory mechanism of these two brain oscillators according to OA severity.

Learn More >

CGRP-mediated trigeminovascular reactivity in migraine patients treated with erenumab.

Learn More >

Beyond the pain: A qualitative study exploring the physical therapy experience in patients with chronic low back pain.

Chronic low back pain (cLBP) is a complex condition that is physically and psychologically debilitating, with vulnerable populations experiencing more severe outcomes. Physical therapy (PT) includes evidence-based treatments that can reduce disability, however the experience of PT can vary amongst different populations. Empirical evidence is largely based on majority samples that are predominantly white with high educational attainment. Little is known regarding how people from vulnerable groups (e.g. low income and racial minority) experience physical therapy treatment for low back pain.

Learn More >

Including Arts in Rehabilitation Enhances Outcomes in the Psychomotor, Cognitive, and Affective Domains: A Scoping Review.

The purpose of this scoping review was to analyze the published literature regarding the use of art in the context of rehabilitation for consideration in physical therapy.

Learn More >

Lysophosphatidyl-choline 16: 0 mediates chronic joint pain associated to rheumatic diseases through acid-sensing ion channel 3.

Rheumatic diseases are often associated to debilitating chronic pain, which remains difficult to treat and requires new therapeutic strategies. We had previously identified lysophosphatidyl-choline (LPC) in the synovial fluids from few patients, and shown its effect as a positive modulator of Acid-Sensing Ion Channel 3 (ASIC3) able to induce acute cutaneous pain in rodents. However, the possible involvement of LPC in chronic joint pain remained completely unknown. Here we show, from two independent cohorts of patients with painful rheumatic diseases, that the synovial fluid levels of LPC are significantly elevated, especially the LPC16:0 species, compared to post mortem controls. Moreover, LPC16:0 levels are correlated with pain outcomes in a cohort of osteoarthritis (OA) patients. However, LPC16:0 but do not appear to be the hallmark of a particular joint disease, since similar levels are found in the synovial fluids of a second cohort of patients with various rheumatic diseases. The mechanism of action was next explored by developing a pathology-derived rodent model. Intra-articular injections of LPC16:0 is a triggering factor of chronic joint pain in both male and female mice, ultimately leading to persistent pain and anxiety-like behaviors. All these effects are dependent on ASIC3 channels, which drive sufficient peripheral inputs to generate spinal sensitization processes. This study brings evidences from mouse and human supporting a role for LPC16:0 via ASIC3 channels in chronic pain arising from joints, with potential implications for pain management in OA and possibly across other rheumatic diseases.

Learn More >

Search