I am a
Home I AM A Search Login

Animal Studies

Share this

Cancer aggravation due to persistent pain signals with the increased expression of pain-related mediators in sensory neurons of tumor-bearing mice.

A growing body of evidence suggests that intractable pain reduces both the quality of life and survival in cancer patients. In the present study, we evaluated whether chronic pain stimuli […]

Learn More >

High fat/high sucrose diet worsens metabolic outcomes and widespread hypersensitivity following early life stress exposure in female mice.

Exposure to stress early in life has been associated with adult-onset co-morbidities such as chronic pain, metabolic dysregulation, obesity, and inactivity. We have established an early life stress model using […]

Learn More >

The prelimbic cortex regulates itch processing by controlling attentional bias.

Itch is a complex and unpleasant sensory experience. Recent studies have begun to investigate the neural mechanisms underlying the modulation of sensory and emotional components of itch in the brain. However, the key brain regions and neural mechanism involved in modulating the attentional processing of itch remain elusive. Here, we showed that the prelimbic cortex (PrL) is associated with itch processing and that the manipulation of itch-responsive neurons in the PrL significantly disrupted itch-induced scratching. Interestingly, we found that increasing attentional bias toward a distracting stimulus could disturb itch processing. We also demonstrated the existence of a population of attention-related neurons in the PrL that drive attentional bias to regulate itch processing. Importantly, itch-responsive neurons and attention-related neurons significantly overlapped in the PrL and were mutually interchangeable in the regulation of itch processing at the cellular activity level. Our results revealed that the PrL regulates itch processing by controlling attentional bias.

Learn More >

METTL3-Mediated N6-Methyladenosine Modification of lncRNA D26496 Suppresses the Proliferation and Migration of Schwann Cells after Sciatic Nerve Injury.

Previous reports showed that LncRNA D26496 was downregulated and N6-methyladenosine (m6A) methyltransferase METTL3 was upregulated in sciatic nerve injury (SNI). YTH-Domain Family Member 2 (YTHDF2) regulated RNA degradation through recognizing m6A sites. However, whether METTL3-mediated m6A of D26496 plays a role in development of SNI is unknown. Therefore, in this study, we established a rat SNI model and a HO-induced Schwann cell injury model to investigate the role of D26496 in modulating SNI and how the expression of D26496 was regulated during this process. D26496 expression was downregulated in both models. Rats with SNI displayed severe oxidative stress, manifested as increased MDA production and decreased SOD and GSH activity. Moreover, overexpression of D26496 alleviated HO-induced Schwann cell injury likely by promoting cell proliferation and migration and suppressing cell apoptosis and oxidative stress. Mechanism studies found that METTL3 expression was upregulated after SNI, and silencing METTL3 reduced the D26496 m6A level, but upregulated D26496 expression. Subsequent studies found that YTHDF2 was upregulated after SNI, and abundant m6A modified D26496 in the precipitated protein-RNA complexes by anti-YTHDF2 antibody, whereas silencing YTHDF2 promoted D26496 expression but had no effect on m6A levels of D29496. Silencing D26496 reversed the protective effect of knocking down METTL3 or knocking down YTHDF2 on HO-induced cell damage. In vivo, D26496 overexpression alleviated SNI-induced neuropathic pain and oxidative stress. In conclusion, our results suggested that D26496 m6A modification mediated by METTL3 and recognition of D26496 m6A sites by YTHDF2 induced D26496 degradation, thereby participating in the progression of SNI.

Learn More >

Time-dependent and selective microglia-mediated removal of spinal synapses in neuropathic pain.

Neuropathic pain is a debilitating condition resulting from damage to the nervous system. Imbalance of spinal excitation and inhibition has been proposed to contribute to neuropathic pain. However, the structural basis of this imbalance remains unknown. Using a preclinical model of neuropathic pain, we show that microglia selectively engulf spinal synapses that are formed by central neurons and spare those of peripheral sensory neurons. Furthermore, we reveal that removal of inhibitory and excitatory synapses exhibits distinct temporal patterns, in which microglia-mediated inhibitory synapse removal precedes excitatory synapse removal. We also find selective and gradual increase in complement depositions on dorsal horn synapses that corresponds to the temporal pattern of microglial synapse pruning activity and type-specific synapse loss. Together, these results define a specific role for microglia in the progression of neuropathic pain pathogenesis and implicate these immune cells in structural remodeling of dorsal horn circuitry.

Learn More >

Pramipexole inhibits formalin-induce acute and long-lasting mechanical hypersensitivity via NF-kB pathway in rats.

Pain is one of the most frequent causes for patients to seek medical care. It interferes with daily functioning and affects the quality of life of the patient. There is a clear need to investigate nonopioid or non-nonsteroidal anti-inflammatory drug alternatives for the treatment of pain. In this study, we determined the effect of acute pre- and posttreatment with pramipexole (PPX), a dopamine D2/D3 selective agonist, on formalin 1%-induced acute and long-lasting nociceptive behavior sensitivity in rats. Moreover, we sought to investigate whether the antiallodynic and antihyperalgesic effect induced by PPX was mediated through the nuclear factor-κB (NF-kB) signaling pathway. Moreover, acute systemic pretreatment with PPX (1 and 3 mg/kg, ip) suppressed the formalin-induced nociceptive behavior during both phases of the formalin test and the development of formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. Acute systemic posttreatment with PPX (3 mg/kg, ip) reverted the formalin-induced long-lasting secondary mechanical allodynia and hyperalgesia. Furthermore, PPX inhibits the protein expression of NF-κB-p65 and the levels of tumor necrosis factor-α and interleukin-1β in the spinal cord of animals with secondary mechanical allodynia and hyperalgesia induced by formalin. These data suggest that PPX has a potential role in producing anti-inflammatory activity. Moreover, the antiallodynic and antihyperalgesic effects induced by PPX can be mediated through the NF-kB signaling pathway.

Learn More >

IL-31 and IL-31 receptor alpha in pemphigus: Contributors to more than just itch?

Pemphigus is an autoimmune blistering disorder with four major subtypes: pemphigus vulgaris (PV), pemphigus vegetans (PVe), pemphigus foliaceus (PF), and pemphigus herpetiformis (PH). Among them, PF and PH present itching as a clinical feature; however, the mechanisms behind the pruritus are still unclear. In this report, we sought to investigate the expression of a type 2 inflammation-related pruritogenic cytokine IL-31 and its receptor subunit IL-31RA through immunofluorescence staining analysis. The number of eosinophils, basophils, and mast cells, and the expression levels of thymic stromal lymphopoietin (TSLP) and periostin were also investigated. Evaluation showed an increase in the number of dermal IL-31 cells and IL-31RA cells in PH and PVe. Epidermal expression of IL-31RA increased in PV, PF, and PVe, but not in PH, compared to healthy individuals. The number of dermal eosinophils and basophils was also increased in PVe and PH. The number of dermal mast cells and expression levels of TSLP and periostin did not change among pemphigus subtypes and healthy controls. Collectively, enhanced IL-31/IL-31RA signaling and the increased numbers of dermal eosinophils and basophils may participate in itching in PH. On the other hand, IL-31/IL-31RA signaling seemed unable to provoke itching in PVe, a non-pruritic subtype of pemphigus, although it might contribute to epidermal thickening and dermal fibrosis.

Learn More >

Transient Receptor Potential Ankyrin-1-expressing vagus nerve fibers mediate IL-1β induced hypothermia and reflex anti-inflammatory responses.

Inflammation, the physiological response to infection and injury, is coordinated by the immune and nervous systems. Interleukin-1β (IL-1β) and other cytokines produced during inflammatory responses activate sensory neurons (nociceptors) to mediate the onset of pain, sickness behavior, and metabolic responses. Although nociceptors expressing Transient Receptor Potential Ankyrin-1 (TRPA1) can initiate inflammation, comparatively little is known about the role of TRPA1 nociceptors in the physiological responses to specific cytokines.

Learn More >

Electroacupuncture ameliorates depression-like behaviors comorbid to chronic neuropathic pain via Tet1-mediated restoration of adult neurogenesis.

Although electroacupuncture (EA) stimulation is a widely used therapy for chronic pain and comorbid psychiatric disorders, its long-term effects on chronic neuropathic pain-induced depression and the underlying mechanisms remain elusive. In the present study, we found that EA stimulation was able to restore adult neurogenesis in the ventral dentate gyrus (DG), by both increasing neuronal differentiation and restoring the normal morphology of newborn dendrites, in mice with spared nerve injury (SNI) surgery. By ablating the Nestin + neural stem cells (NSCs) via DTA expression, we further proved that neurogenesis in the ventral DG was crucial to the long-term, but not the immediate antidepressant effect of EA, nor was it associated with nociception. Furthermore, we found that the restoration of neurogenesis was dependent on Tet1-mediated epigenetic modification upon EA treatment. Tet1 could bind to the promoter of the Prox1 gene, thus catalyzing its demethylation and facilitating its expression, which finally contributed to the restoration of neurogenesis and amelioration of depression-like behaviors induced by chronic neuropathic pain. Thus, we conclude that EA stimulation restores inhibited Tet1 expression in hippocampal NSCs of mice with chronic neuropathic pain, and increased Tet1 expression ameliorates hypermethylation of Prox1 and restores normal adult neurogenesis in the ventral DG, which contributes to the long-term antidepressant effect of EA.

Learn More >

Activation of neuronal FLT3 promotes exaggerated sensorial and emotional pain-related behaviors facilitating the transition from acute to chronic pain.

Acute pain has been associated with persistent pain sensitization of nociceptive pathways increasing the risk of transition from acute to chronic pain. We demonstrated the critical role of the FLT3- tyrosine kinase receptor, expressed in sensory neurons, in pain chronification after peripheral nerve injury. However, it is unclear whether injury-induced pain sensitization can also promote long-term mood disorders. Here, we evaluated the emotional and sensorial components of pain after a single (SI) or double paw incision (DI) and the implication of FLT3. DI mice showed an anxiodepressive-like phenotype associated with extended mechanical pain hypersensitivity and spontaneous pain when compared to SI mice. Behavioral exaggeration was associated with peripheral and spinal changes including increased microglia activation after DI versus SI. Intrathecal microglial inhibitors not only eliminated the exaggerated pain hypersensitivity produced by DI but also prevented anxiodepressive-related behaviors. Behavioral and cellular changes produced by DI were blocked in Flt3 knock-out animals and recapitulated by repeated intrathecal FL injections in naive animals. Finally, humanized antibodies against FLT3 reduced DI-induced behavioral and microglia changes. Altogether our results show that the repetition of peripheral lesions facilitate not only exaggerated nociceptive behaviors but also induced anxiodepressive disorders supported by spinal central changes that can be blocked by targeting peripheral FLT3.

Learn More >

Search