I am a
Home I AM A Search Login

Animal Studies

Share this

Intact mast cell content during mild head injury is required for development of latent pain sensitization: implications for mechanisms underlying post-traumatic headache.

Post-traumatic headache (PTH) is one of the most common, debilitating and difficult symptoms to manage after a traumatic head injury. While the mechanisms underlying PTH remain elusive, recent studies in rodent models suggest the potential involvement of calcitonin gene-related peptide (CGRP), a mediator of neurogenic inflammation, and the ensuing activation of meningeal mast cells (MCs), pro-algesic resident immune cells that can lead to the activation of the headache pain pathway. Here, we investigated the relative contribution of MCs to the development of PTH-like pain behaviors in a model of mild closed head injury (mCHI) in male rats. We initially tested the relative contribution of peripheral CGRP signaling to the activation of meningeal MCs following mCHI using a blocking anti-CGRP monoclonal antibody. We then employed a prophylactic MC granule depletion approach to address the hypotheses that intact meningeal MC granule content is necessary for the development of PTH-related pain-like behaviors. The data suggest that following mCHI, ongoing activation of meningeal MCs is not mediated by peripheral CGRP signaling, and does not contribute to the development of the mCHI-evoked cephalic mechanical pain hypersensitivity. Our data, however, also reveals that the development of latent sensitization, manifested as persistent hypersensitivity upon the recovery from mCHI-evoked acute cranial hyperalgesia to the headache trigger glyceryl trinitrate requires intact MC content during and immediately after mCHI. Collectively, our data implicate the acute activation of meningeal MCs as mediator of chronic pain hypersensitivity following a concussion or mCHI. Targeting MCs may be explored for early prophylactic treatment of PTH.

Learn More >

Identifying Plasma Derived Extracellular Vesicle (EV) Contained Biomarkers in the Development of Chronic Neuropathic Pain.

Research into potentially novel biomarkers for chronic pain development is lacking. microRNAs (miRNAs) are attractive candidates as biomarkers due to their conservation across species, stability in liquid biopsies, and variation that corresponds to a pathologic state. miRNAs can be sorted into extracellular vesicles (EVs) within the cell and released from the site of injury. EVs transfer cargo molecules between cells thus affecting key intercellular signaling pathways. The focus of this study was to determine the plasma derived EV miRNA content in a chronic neuropathic pain rat model. This was accomplished by performing either spinal nerve ligation (SNL; n=6) or sham (n=6) surgery on anesthetized male Sprague-Dawley rats. Mechanosensitivity was assessed and plasma derived EV RNA was isolated at baseline (BL), day 3, and 15 post-nerve injury. EV extracted small RNA was sequenced followed by differentially expressed (DE) miRNAs and gene target enrichment/signaling pathway analysis performed using R packages and TargetScan/Ingenuity pathway analysis (IPA), respectively. Seven of the DE miRNAs were validated by Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR). The data indicated that SNL rats displayed a time-dependent threshold reduction in response to evoked stimuli from day 3 to day 15 post-nerve injury. The data also revealed that 22 and 74 miRNAs at day 3 and 15, respectively, and 33 miRNAs at both day 3 and 15 were uniquely DE between the SNL and sham groups. The key findings from this proposal include 1) the majority of the DE EV miRNAs, which normally function to suppress inflammation, were downregulated, and 2) several of the plasma derived DE EV miRNAs reflect previously observed changes in the injured L5 nerve. The plasma derived DE EV miRNAs regulate processes important in the development and maintenance of neuropathic pain states and potentially serve as key regulators, biomarkers, and targets in the progression and treatment of chronic neuropathic pain.

Learn More >

Glypicans Dally and Dally-like control injury-induced allodynia in Drosophila.

Over 100 million people are challenged by the effects of chronic pain in the United States alone. This burden also impacts the U.S. economy; 600 billion dollars annually is spent on medical care, medications, and lost productivity in the workplace.1 Current opioid treatments cause adverse effects including nausea, constipation, tolerance, and addiction liability.2 Nociceptive sensitization is thought to perpetuate chronic pain, but too little is known about its mechanisms. Components of the pathways that sensitize the nociceptors after injury are likely to be valuable targets for novel medications for the relief or prevention of chronic pain. Utilizing the Drosophila melanogaster cell targeting and RNA interference toolkit, we are investigating the Bone Morphogenetic Protein (BMP) pathway and its role in ultraviolet light (UV) injury-induced nociceptive sensitization. BMPs are well known as secreted developmental morphogens that control development, but other functions are known.3 We have previously identified BMP signaling components used in nociceptors to modulate injury-induced allodynia, including Decapentaplegic (Dpp, orthologous to mammalian BMP 2/4), and its downstream signaling components.4 The morphogen Hedgehog has also been shown to be necessary for allodynia following injury.5 Here, we show that two membrane-embedded regulators of the Dpp and Hedgehog pathways, Dally and Dally-like, are necessary for injury-induced thermal allodynia, as the formation of sensitization was reduced when either component was suppressed. These BMP components are highly conserved and, because dysregulation of nociceptor sensitization underlies chronic pain, the homologs of Dally and Dally-like may represent novel therapeutic targets in humans challenged by chronic pain. Furthermore, because of their extracellular location, Dally and Dally-like represent attractive therapeutic drug targets because such drugs would not need to cross the plasma membrane.

Learn More >

HDAC2, but Not HDAC1, Regulates Kv1.2 Expression to Mediate Neuropathic Pain in CCI Rats.

The expression of potassium ion channel subunit 1.2 (Kv1.2) in the dorsal root ganglion (DRG) influences the excitability of neurons, which contributes to the induction and development of neuropathic pain (NPP); however, the molecular mechanisms underlying the downregulation of Kv1.2 in NPP remain unknown. Histone deacetylase (HDAC) inhibitors are reported to attenuate the development of pain hypersensitivity in rats with NPP. Whether HDAC inhibitors contribute to regulation of Kv1.2 expression, and which specific HDAC subunit is involved in NPP, remain unexplored. In this study we established a chronic constrictive injury (CCI) model and used western blot, quantitative real-time PCR, immunostaining, intrathecal injection, and siRNA methods to explore which HDAC subunit is involved in regulating Kv1.2 expression to mediate NPP. Our results demonstrated that nerve injury led to upregulation of HDAC1 expression in the DRG, and of HDAC2 in the DRG and spinal cord. Double-labeling immunofluorescence histochemistry showed that Kv1.2 principally co-localized with HDAC2, but not HDAC1, in NF200-positive large neurons of the DRG. Intrathecal injection with the HDAC inhibitor, suberoylanilide hydroxamic acid, attenuated mechanical and thermal hypersensitivity and reversed the decreased expression of Kv1.2 in rats with CCI. Furthermore, treatment with HDAC2, but not HDAC1, siRNA also relieved mechanical and thermal hypersensitivity and upregulated the Kv1.2 expression in this model. In vitro transfection of PC12 cells with HDAC2 and HDAC1 siRNA confirmed that only HDAC2 siRNA could regulate the expression of Kv1.2. These findings suggest that HDAC2, but not HDAC1, is involved in NPP through regulation of Kv1.2 expression.

Learn More >

Dopamine D1 and D3 receptor modulators restore morphine analgesia and prevent opioid preference in a model of neuropathic pain.

A secondary consequence of spinal cord injury (SCI) is debilitating chronic neuropathic pain, which is commonly morphine resistant and inadequately managed by current treatment options. Consequently, new pain management therapies are desperately needed. We previously reported that dopamine D3 receptor (D3R) dysfunction was associated with opioid resistance and increases in D1 receptor (D1R) protein expression in the spinal cord. Here, we demonstrate that in a model of SCI neuropathic pain, adjuvant therapy with a D3R agonist (pramipexole) or D1R antagonist (SCH 39166) can restore the analgesic effects of morphine and reduce reward potential. Prior to surgery thermal and mechanical thresholds were tested in three groups of female rats (naïve, sham, SCI). After surgery, testing was repeated under the following drug conditions: 1) saline, 2) morphine, 3) pramipexole, 4) SCH 39166, 5) morphine + pramipexole, and 6) morphine + SCH 39166. Reward potential of morphine and both combinations was assessed using conditioned place preference. Following SCI, morphine + pramipexole and morphine + SCH 39166 significantly increased both thermal and mechanical thresholds. Morphine alone induced conditioned place preference, but when combined with either the D3R agonist or D1R antagonist preference was not induced. The data suggest that adjunct therapy with receptor-specific dopamine modulators can restore morphine analgesia and decrease reward potential and thus, represents a new target for pain management therapy after SCI.

Learn More >

Activation of mitogen-activated protein kinases in satellite glial cells of the trigeminal ganglion contributes to substance P-mediated inflammatory pain.

Inflammatory orofacial pain, in which substance P (SP) plays an important role, is closely related to the cross-talk between trigeminal ganglion (TG) neurons and satellite glial cells (SGCs). SGC activation is emerging as the key mechanism underlying inflammatory pain through different signalling mechanisms, including glial fibrillary acidic protein (GFAP) activation, phosphorylation of mitogen-activated protein kinase (MAPK) signalling pathways, and cytokine upregulation. However, in the TG, the mechanism underlying SP-mediated orofacial pain generated by SGCs is largely unknown. In this study, we investigated whether SP is involved in inflammatory orofacial pain by upregulating interleukin (IL)-1β and tumour necrosis factor (TNF)-α from SGCs, and we explored whether MAPK signalling pathways mediate the pain process. In the present study, complete Freund's adjuvant (CFA) was injected into the whisker pad of rats to induce an inflammatory model in vivo. SP was administered to SGC cultures in vitro to confirm the effect of SP. Facial expression analysis showed that pre-injection of L703,606 (an NK-1 receptor antagonist), U0126 (an inhibitor of MAPK/extracellular signal-regulated kinase [ERK] kinase [MEK] 1/2), and SB203580 (an inhibitor of P38) into the TG to induce targeted prevention of the activation of the NK-1 receptor and the phosphorylation of MAPKs significantly suppressed CFA-induced inflammatory allodynia. In addition, SP promoted SGC activation, which was proven by increased GFAP, p-MAPKs, IL-1β and TNF-α in SGCs under inflammatory conditions. Moreover, the increase in IL-1β and TNF-α was suppressed by L703, 606, U0126 and SB203580 in vivo and in vitro. These present findings suggested that SP, released from TG neurons, activated SGCs through the ERK1/2 and P38 pathways and promoted the production of IL-1β and TNF-α from SGCs, contributing to inflammatory orofacial pain associated with peripheral sensitization.

Learn More >

Peripheral nerve pathology in sickle cell disease mice.

Learn More >

Spinal microglia contribute to cancer-induced pain through system xC−-mediated glutamate release.

Learn More >

NPY2R signaling gates spontaneous and mechanical, but not thermal, pain transmission.

Neuropeptide Y (NPY) signaling plays an important role in inhibiting chronic pain in the spinal cord of mice. However, little is known about the respective roles of two major NPY receptors, Y1R and Y2R, in evoked, and spontaneous, pain behavior under normal physiological condition. Using intrathecal (i.t.) administration approach, we found that pharmacological inhibition of Y2R, unexpectedly, gave rise to spontaneous pain behavior. In addition, Y2R antagonism also resulted in long-lasting mechanical but not thermal hypersensitivity. By contrast, no overt spontaneous pain behavior, nor mechanical and thermal hypersensitivity were detected after pharmacological inhibition of Y1R. Remarkably, activation of Y1R produced powerful analgesic effect: blocking both evoked and spontaneous pain behavior resulted from Y2R antagonism. These findings highlight the pivotal role of endogenous Y2R in gating mechanical and spontaneous pain transmission. Importantly, our results suggest that Y1R could be a therapeutic target that may be exploited for alleviating spontaneous pain without affecting acute pain transmission.

Learn More >

Dorsal Root Ganglia Homeobox downregulation in primary sensory neurons contributes to neuropathic pain in rats.

Learn More >

Search