I am a
Home I AM A Search Login

Animal Studies

Share this

Early life vincristine fails to prime developing pain pathways.

Early life administration of vincristine (VNC), commonly used to treat pediatric leukemia, evokes peripheral neuropathy and mechanical pain hypersensitivity in rats that lasts into adolescence. However, the degree to which VNC-evoked neuropathic pain persists throughout adulthood has yet to be examined. It also remains unclear if pediatric VNC exposure can 'prime' developing nociceptive pathways and thereby exacerbate chronic pain following subsequent trauma later in life. To address these issues, rats received five total doses of VNC (60 µg/kg; or vehicle) on postnatal days (P) 11, 13, 17, 19 and 21 followed by a hindpaw surgical incision during adulthood. In addition, in order to model the clinical scenario where cancer relapse necessitates another round of chemotherapy, separate groups of rats that had been treated with VNC (or vehicle) as neonates were subsequently administered VNC as adults (five injections at 100 µg/kg). Intraepidermal nerve fiber density and baseline mechanical pain sensitivity were similar between the neonatal VNC and vehicle-treated littermate controls at 13-15 weeks of age, suggesting that the peripheral neuropathy, and resulting chronic pain, had resolved by adulthood. Importantly, there was no significant overall effect of early life VNC on the severity of post-operative pain following adult incision. Similarly, prior VNC exposure did not significantly influence the degree of mechanical pain hypersensitivity produced by adult VNC treatment. Collectively, these findings suggest that early life VNC administration does not increase the susceptibility to develop chronic pain as adults.

Learn More >

Bulleyaconitine A inhibits itch and itch sensitization induced by histamine and chloroquine.

Itch (pruritus), specifically chronic itch associated with disease conditions, significantly impairs the patient's quality of life. At present, the mechanisms underlying this aversive experience are still unclear, and the effective treatment of itch is largely unmet. Here, we report that intragastrical administration of bulleyaconitine A (BLA), which has been used for treating chronic pain for 30 years in China, inhibited itch-like behaviors induced by intradermal injection of histamine and chloroquine in mice and rats, dose-dependently. We found that a single application of the pruritic agents at the skin region innervated by the sural nerve induced long-term potentiation (LTP) of C-fiber field potentials evoked by the stimulation of the same nerve in the spinal dorsal horn of rats. The spinal LTP was remarkably reversed by the spinal application of either BLA or gastrin-releasing peptide receptor (GRPR) antagonist (PD176252). The effect of PD176252 was completely occluded by BLA, while the effect of BLA was only partially occluded by PD176252. Repetitive injection (daily, for four days) of either histamine or chloroquine in the back of the neck enhanced scratching behaviors progressively, and the itch sensitization persisted for at least one week after the discontinuation of the injections. The behavioral change was accompanied with the potentiation of C-fiber synaptic transmission in the dorsal horn. Both the itch sensitization and synaptic potentiation were substantially attenuated by intragastrical BLA. Together, BLA was effective in inhibiting histamine-dependent and histamine-independent itches, and the mechanisms underlying these effects were involved but not limited to the inhibition of GRP-GRPR signaling in the spinal dorsal horn.

Learn More >

TNF-α mediated upregulation of Na1.7 currents in rat dorsal root ganglion neurons is independent of CRMP2 SUMOylation.

Clinical and preclinical studies have shown that patients with Diabetic Neuropathy Pain (DNP) present with increased tumor necrosis factor alpha (TNF-α) serum concentration, whereas studies with diabetic animals have shown that TNF-α induces an increase in Na1.7 sodium channel expression. This is expected to result in sensitization of nociceptor neuron terminals, and therefore the development of DNP. For further study of this mechanism, dissociated dorsal root ganglion (DRG) neurons were exposed to TNF-α for 6 h, at a concentration equivalent to that measured in STZ-induced diabetic rats that developed hyperalgesia. Tetrodotoxin sensitive (TTXs), resistant (TTXr) and total sodium current was studied in these DRG neurons. Total sodium current was also studied in DRG neurons expressing the collapsin response mediator protein 2 (CRMP2) SUMO-incompetent mutant protein (CRMP2-K374A), which causes a significant reduction in Na1.7 membrane cell expression levels. Our results show that TNF-α exposure increased the density of the total, TTXs and TTXr sodium current in DRG neurons. Furthermore, TNF-α shifted the steady state activation and inactivation curves of the total and TTXs sodium current. DRG neurons expressing the CRMP2-K374A mutant also exhibited total sodium current increases after exposure to TNF-α, indicating that these effects were independent of SUMOylation of CRMP2. In conclusion, TNF-α sensitizes DRG neurons via augmentation of whole cell sodium current. This may underlie the pronociceptive effects of TNF-α and suggests a molecular mechanism responsible for pain hypersensitivity in diabetic neuropathy patients.

Learn More >

Evaluation of the Anti-Inflammatory and Chondroprotective Effect of Celecoxib on Cartilage and in a Rat Osteoarthritis Model.

The potential chondroprotective effect of celecoxib, a nonsteroidal anti-inflammatory drug and selective cyclooxygenase-2 inhibitor used to reduce pain and inflammation in knee osteoarthritis patients, is disputed. This study aimed at investigating the chondroprotective effects of celecoxib on (1) human articular cartilage explants and (2) in an osteoarthritis rat model.

Learn More >

Single cell transcriptomics of primate sensory neurons identifies cell types associated with chronic pain.

Distinct types of dorsal root ganglion sensory neurons may have unique contributions to chronic pain. Identification of primate sensory neuron types is critical for understanding the cellular origin and heritability of chronic pain. However, molecular insights into the primate sensory neurons are missing. Here we classify non-human primate dorsal root ganglion sensory neurons based on their transcriptome and map human pain heritability to neuronal types. First, we identified cell correlates between two major datasets for mouse sensory neuron types. Machine learning exposes an overall cross-species conservation of somatosensory neurons between primate and mouse, although with differences at individual gene level, highlighting the importance of primate data for clinical translation. We map genomic loci associated with chronic pain in human onto primate sensory neuron types to identify the cellular origin of chronic pain. Genome-wide associations for chronic pain converge on two different neuronal types distributed between pain disorders that display different genetic susceptibilities, suggesting both unique and shared mechanisms between different pain conditions.

Learn More >

Enhancement of morphine-induced antinociception after electroconvulsive shock in mice.

Electroconvulsive therapy (ECT) has been applied for chronic pain for decades. The amounts of opioids to treat pain are sometimes reduced after a series of ECT. The effect of ECT on morphine-induced analgesia and its mechanism underlying the reduction of morphine requirement has yet to be clarified. Therefore, we administered electroconvulsive shocks (ECS) to mice and investigated the antinociceptive effect of morphine in a hot plate test. We examined the expression level of µ-opioid receptor in the thalami of mice 25 h after administration of ECS compared to the thalami of mice without ECS administration using western blotting. ECS disturbed the development of a decrease in the percentage of maximal possible effect (%MPE), which was observed 24 h after a morphine injection, when ECS was applied 25, 23, 21, and 12 h before the second administration of morphine. We also examined the effect of ECS on the dose-response curve of %MPE to morphine-antinociception. Twenty-five hours after ECS, the dose-response curve was shifted to the left, and the EC of morphine given to ECS-pretreated mice decreased by 30.1% compared to the mice that were not pretreated with ECS. We also found that the expression level of µ-opioid receptors was significantly increased after ECS administration. These results confirm previous clinical reports showing that ECT decreased the required dose of opioids in neuropathic pain patients and suggest the hypothesis that this effect of ECT works through the thalamus.

Learn More >

Spinal 5-HT3 Receptor Contributes to Somatic Hyperalgesia Induced by Sub-chronic Stress.

Stress facilitates pain perception and sensitizes pain pathways,but the underlying mechanism is still unclear. The purpose of this study was to investigate whether activation of 5-hydroxytryptamine (5-HT) subtype-3 receptor in the spinal cord contributes to somatic hyperalgesia induced by repeated 3 day forced swim (FS) in the estradiol (E2) replacement rats after ovariectomy (OVx). Somatic sensitivity was assessed by thermal withdrawal latency to radiant heat and mechanical withdrawal threshold to von Frey filaments. The expression of 5-HT3A receptor in the L4-L5 dorsal spinal cord was examined by Western blot. Repeated FS stress reduced the thermal withdrawal latency and mechanical withdrawal threshold, and the presence of E2 exaggerated this hyperalgesia. The expression of 5-HT3A receptor in the L4-L5 dorsal spinal cord increased significantly following repeated FS in E2 replacement rats. Intrathecal injection of 5-HT3 receptor antagonist Y-25130 blocked the somatic hyperalgesia induced by FS stress. These data indicate that 5-HT3 receptor activation through the descending facilitation system contributes to the somatic hyperalgesia evoked by FS stress. The results may provide a new therapeutic avenue for alleviating pain induced by stress.

Learn More >

Adenosine A3 receptor activation inhibits pro-nociceptive N-type Ca2+ currents and cell excitability in dorsal root ganglion neurons.

Recently studies have focused on the anti-hyperalgesic activity of the A3 adenosine receptor (A3AR) in several chronic pain models, but the cellular and molecular basis of this effect is still unknown. Here, we investigated the expression and functional effects of A3AR on the excitability of small-medium sized, capsaicin-sensitive, dorsal root ganglion (DRG) neurons isolated from 3-4 week-old rats. RT-PCR experiments and immunofluorescence analysis revealed A3AR expression in DRG neurons. Patch-clamp experiments demonstrated that two distinct A3AR agonists, Cl-IB-MECA and the highly selective MRS5980, inhibited Ca-activated K (KCa) currents evoked by a voltage ramp protocol. This effect was dependent on a reduction of Ca influx via N-type voltage-dependent Ca channels (VDCCs) as Cl-IB-MECA-induced inhibition was sensitive to the N-type blocker PD173212 but not to the L-type blocker, lacidipine. The endogenous agonist adenosine also reduced N-type Ca currents, and its effect was inhibited by 56% in the presence of A3AR antagonist MRS1523, demonstrating that the majority of adenosine's effect is mediated by this receptor subtype. Current-clamp recordings demonstrated that neuronal firing of rat DRG neurons was also significantly reduced by A3AR activation in a MRS1523-sensitive but PD173212-insensitive manner. Intracellular Ca measurements confirmed the inhibitory role of A3AR on DRG neuronal firing. We conclude that pain-relieving effects observed upon A3AR activation could be mediated through N-type Ca channel block and action potential inhibition as independent mechanisms in isolated rat DRG neurons. These findings support A3AR-based therapy as a viable approach to alleviate pain in different pathologies.

Learn More >

Does toe clipping for genotyping interfere with later-in-life nociception in mice?

Learn More >

Identification of an allosteric binding site on the human glycine transporter, GlyT2, for bioactive lipid analgesics.

The treatment of chronic pain is poorly managed by current analgesics, and there is a need for new classes of drugs. We recently developed a series of bioactive lipids that inhibit the human glycine transporter GlyT2 (SLC6A5) and provide analgesia in animal models of pain. Here, we have used functional analysis of mutant transporters combined with molecular dynamics simulations of lipid-transporter interactions to understand how these bioactive lipids interact with GlyT2. This study identifies a novel extracellular allosteric modulator site formed by a crevice between transmembrane domains 5, 7, and 8, and extracellular loop 4 of GlyT2. Knowledge of this site could be exploited further in the development of drugs to treat pain, and to identify other allosteric modulators of the SLC6 family of transporters.

Learn More >

Search