I am a
Home I AM A Search Login

Animal Studies

Share this

Inflammatory and neuropathic gene expression signatures of chemotherapy-induced neuropathy induced by vincristine, cisplatin and oxaliplatin in C57BL/6J mice.

Vincristine, oxaliplatin, and cisplatin are commonly prescribed chemotherapeutic agents for the treatment of many tumors. However, a main side-effect is chemotherapy-induced peripheral neuropathy (CIPN), which may lead to changes in chemotherapeutic treatment. Although symptoms associated with CIPN are recapitulated by mouse models, there is limited knowledge of how these drugs affect the expression of genes in sensory neurons. The present study carried out a transcriptomic analysis of dorsal root ganglia (DRG) following vincristine, oxaliplatin, and cisplatin treatment with a view to gain insight into the comparative pathophysiological mechanisms of CIPN. RNA-Seq revealed 368, 295 and 256 differential expressed genes (DEGs) induced by treatment with vincristine, oxaliplatin and cisplatin, respectively and only five shared genes were dysregulated in all three groups. Cell type enrichment analysis and gene set enrichment analysis showed predominant effects on genes associated with the immune system after treatment with vincristine, while oxaliplatin treatment affected mainly neuronal genes. Treatment with cisplatin resulted in a mixed gene expression signature. Perspective: These results provide insight into the recruitment of immune responses to DRG and indicate enhanced neuro-inflammatory processes following administration of vincristine, oxaliplatin, and cisplatin. These gene expression signatures may provide insight into novel drug targets for treatment of CIPN.

Learn More >

Cathepsin S acts via protease-activated receptor 2 to activate sensory neurons and induce itch-like behaviour.

Chronic itch is a debilitating condition characterised by excessive scratching and is a symptom frequently reported in skin diseases such as atopic dermatitis. It has been proposed that release of the cysteine protease Cathepsin S (CatS) from skin keratinocytes or immune cells resident in or infiltrating the skin could act as a pruritogen in chronic itch conditions. CatS is known to activate protease-activated receptor 2 (PAR2). We therefore hypothesised that enzymatic activation of neuronally expressed PAR2 by CatS was responsible for activation of sensory neurons and transmission of itch signals. Intradermally-injected human recombinant (hr)-CatS or the PAR2 agonist, SLIGRL-NH behaved as pruritogens by causing scratching behaviour in mice. Hr-CatS-induced scratching behaviour was prevented by CatS inhibitors and PAR2 antagonists and reduced by 50% in TRPV1 mice compared with wild-type mice, whilst no significant reduction in scratching behaviour was observed in TRPA1 mice. Cultured dorsal root ganglion (DRG) cells showed an increase in [Ca] following incubation with hr-CatS, and the percentage of neurons that responded to hr-CatS decreased in the presence of a PAR2 antagonist or in cultures of neurons from TRPV1 mice. Taken together, our results indicate CatS acts as a pruritogen via PAR2 activation in TRPV1-expressing sensory neurons.

Learn More >

Preoperative anxiety induced glucocorticoid signaling reduces GABAergic markers in spinal cord and promotes postoperative hyperalgesia by affecting Npas4.

Preoperative anxiety is common in patients undergoing elective surgery and is closely related to postoperative hyperalgesia. In this study, a single prolonged stress (SPS) model was used to induce preoperative anxiety-like behavior in rats 24h before the surgery. We found that SPS exacerbated the postoperative pain and elevated the level of serum corticosterone (CORT). Previous studies have shown that glucocorticoid (GC) is associated with synaptic plasticity, and decreased spinal GABAergic activity can cause hyperalgesia in rodents. Here, SPS rats lumbar spinal cord showed reduced glutamic acid decarboxylase-65 (GAD65), glutamic acid decarboxylase-67 (GAD67), GABA type A receptor alpha 1 subunit (GABAA α1), and GABA type A receptor gamma 2 subunit (GABAA γ2) , indicating an impairment of GABAergic system. Furthermore, Neuronal PAS domain protein 4 (Npas4) was also reduced in rats after SPS stimulation, which has been reported to promote GABAergic synapse development. Then intraperitoneal injection of RU486 (a glucocorticoid receptor antagonist) rather than spironolactone (a mineralocorticoid receptor antagonist) was found to relieve SPS induced hyperalgesia and reverse Npas4 reduction and the impairment of GABAergic system. Further over-expressing Npas4 could also restore the damage of GABAergic system caused by SPS while interfering with Npas4 caused an opposite effect. Finally, after stimulation of rat primary spinal cord neurons with exogenous CORT in vitro, Npas4 and GABAergic markers were also down-regulated, and RU486 reversed that. Together, our results demonstrated that preoperative anxiety led to GABAergic system impairment in spinal cord and thus caused hyperalgesia due to glucocorticoid-induced down-regulation of Npas4.

Learn More >

mTOR activation due to APPL1 deficiency exacerbates hyperalgesia via Rab5/Akt and AMPK signaling pathway in STZ-induced diabetic rats.

Painful diabetic neuropathy (PDN) is a common complication of diabetes mellitus with obscure underlying mechanisms. The adaptor protein APPL1 is critical in mediating the insulin sensitizing and insulin signaling. In neurons, APPL1 reportedly affects synaptic plasticity, while its role in the pathogenesis of PDN is masked. Our western blotting revealed significantly decreased APPL1 expression in the dorsal horn in streptozocin (STZ)-induced rats versus the control rats, coupled with concomitant mechanical and thermal hyperalgesia. Afterwards, the determination of exact localization of APPL1 in spinal cord by immunofluorescent staining assay revealed highly expressed APPL1 in the lamina of spinal dorsal horn in control rats, with the overexpression in neurons, microglia and underexpression in astrocytes. The APPL1 expression in laminae I and II was significantly downregulated in PDN rats. Additionally, APPL1 deficiency or overexpression contributed to the increase or decrease of Map and Bassoon, respectively. The localization and immunoactivity of APPL1 and mammalian target of rapamycin (mTOR) were determined in spinal dorsal horn in PDN rats and control rats by immunohistochemistry, suggesting pronounced decrease in APPL1 expression in the superficial layer of the spinal cord in PDN rats, with p-mTOR expression markedly augmented. APPL1 knockdown by infection with lentiviral vector facilitated the activation of mTOR and abrogated mechanical withdrawal threshold (MWT) values in PDN rats. Genetically overexpressed APPL1 significantly eliminated the activation of mTOR and resulted in the augmented MWT values and thermal withdrawal latency (TWL) values. Further, the APPL1 levels affect phosphorylation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), and Akt, the phosphorylation of AMPK and Akt as well as the small GTPase, Rab5 expression in PDN rats. Our results uncovered a novel mechanism by which APPL1 deficiency facilitates the mTOR activation, and thus exacerbates the hyperalgesia in STZ-induced diabetic rats, presumably via the regulation of Rab5/Akt and AMPK signaling pathway.

Learn More >

Specialized cutaneous Schwann cells initiate pain sensation.

An essential prerequisite for the survival of an organism is the ability to detect and respond to aversive stimuli. Current belief is that noxious stimuli directly activate nociceptive sensory nerve endings in the skin. We discovered a specialized cutaneous glial cell type with extensive processes forming a mesh-like network in the subepidermal border of the skin that conveys noxious thermal and mechanical sensitivity. We demonstrate a direct excitatory functional connection to sensory neurons and provide evidence of a previously unknown organ that has an essential physiological role in sensing noxious stimuli. Thus, these glial cells, which are intimately associated with unmyelinated nociceptive nerves, are inherently mechanosensitive and transmit nociceptive information to the nerve.

Learn More >

Critical evaluation of animal models of visceral pain for therapeutics development: A focus on irritable bowel syndrome.

The classification of chronic visceral pain is complex, resulting from persistent inflammation, vascular (ischemic) mechanisms, cancer, obstruction or distension, traction or compression, and combined mechanisms, as well as unexplained functional mechanisms. Despite the prevalence, treatment options for chronic visceral pain are limited. Given this unmet clinical need, the development of novel analgesic agents, with defined targets derived from preclinical studies, is urgently needed. While various animal models have played an important role in our understanding of visceral pain, our knowledge is far from complete. Due to the complexity of visceral pain, this document will focus on chronic abdominal pain, which is the major complaint in patients with disorders of the gut-brain interaction, also referred to as functional gastrointestinal disorders, such as irritable bowel syndrome (IBS). Models for IBS are faced with challenges including a complex clinical phenotype, which is comorbid with other conditions including anxiety, depression, painful bladder syndrome, and chronic pelvic pain. Based upon the multifactorial nature of IBS with complicated interactions between biological, psychological, and sociological variables, no single experimental model recapitulates all the symptoms of IBS. This position paper will contextualize chronic visceral pain using the example of IBS and focus on its pathophysiology while providing a critical review of current animal models that are most relevant, robust, and reliable in which to screen promising therapeutics to alleviate visceral pain and delineate the gaps and challenges with these models. We will also highlight, prioritize, and come to a consensus on the models with the highest face/construct validity.

Learn More >

Excitatory neurons are more disinhibited than inhibitory neurons by chloride dysregulation in the spinal dorsal horn.

Neuropathic pain is a debilitating condition caused by the abnormal processing of somatosensory input. Synaptic inhibition in the spinal dorsal horn plays a key role in that processing. Mechanical allodynia – the misperception of light touch as painful – occurs when inhibition is compromised. Disinhibition is due primarily to chloride dysregulation caused by hypofunction of the potassium-chloride co-transporter KCC2. Here we show, in rats, that excitatory neurons are disproportionately affected. This is not because chloride is differentially dysregulated in excitatory and inhibitory neurons, but, rather, because excitatory neurons rely more heavily on inhibition to counterbalance strong excitation. Receptive fields in both cell types have a center-surround organization but disinhibition unmasks more excitatory input to excitatory neurons. Differences in intrinsic excitability also affect how chloride dysregulation affects spiking. These results deepen understanding of how excitation and inhibition are normally balanced in the spinal dorsal horn, and how their imbalance disrupts somatosensory processing.

Learn More >

A randomized clinical efficacy study targeting mPGES1 or EP4 in dogs with spontaneous osteoarthritis.

Canine studies of spontaneous osteoarthritis (OA) pain add valuable data supporting drug treatment mechanisms that may translate to humans. A multicenter, randomized, double-blind, placebo- and active-controlled study was conducted in client-owned dogs with moderate OA pain to evaluate efficacy of LYA, an inhibitor of microsomal prostaglandin E synthase-1 (mPGES1), an EP4 antagonist (LYB), and carprofen, versus placebo. Of 255 dogs screened, 163 were randomized (placebo/LYA/LYB/carprofen: = 43/39/42/39) and 158 completed treatment. Efficacy versus placebo was assessed using Bayesian mixed-effect model for repeated measure analyses of the Canine Brief Pain Inventory (CBPI) pain interference score (PIS; primary endpoint), pain severity score, and overall impression, as well as the Liverpool Osteoarthritis in Dogs (LOAD) mobility score. The posterior probability that the difference to placebo was <0 at week 2 was 80% for LYA and 54% for LYB for CBPI PIS (both <95% predefined threshold). For secondary endpoints, the posterior probability that the difference to placebo was <0 at week 2 ranged from 89 to 96% for LYA and from 56 to 89% for LYB. The posterior probabilities comparing carprofen to placebo groups were ≥90% for all efficacy endpoints. The proportion of dogs with one or more adverse event was not significantly different from placebo (32.6%) for LYA (35.9%) or carprofen (25.6%), but the rate for LYB (59.5%) was higher versus placebo ( = 0.017). LYA treatment demonstrated consistent improvement in all efficacy measures, suggesting that inhibition of mPGES1 may be an effective treatment for chronic pain associated with OA.

Learn More >

Redox regulation of soluble epoxide hydroxylase does not affect pain behavior in mice.

Signaling mediated by soluble epoxide hydrolase (sEH) has been reported to play an important role in pain processing. Previous studies revealed that sEH activity is inhibited by specific binding of electrophiles to a redox-sensitive thiol (Cys521) adjacent to the catalytic center of the hydrolase. Here, we investigated if this redox-dependent modification of sEH is involved in pain processing using "redox-dead" knockin-mice (sEH-KI), in which the redox-sensitive cysteine is replaced by serine. However, behavioral characterization of sEH-KI mice in various animal models revealed that acute nociceptive, inflammatory, neuropathic, and visceral pain processing is not altered in sEH-KI mice. Thus, our results suggest that redox-dependent modifications of sEH are not critically involved in endogenous pain signaling in mice.

Learn More >

SNAP25/syntaxin4/VAMP2/Munc18-1 complexes in spinal dorsal horn contributed to inflammatory pain.

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) have been implicated in the trafficking of postsynaptic glutamate receptors, including N-methyl-D-aspartate (NMDA)-subtype glutamate receptors (NMDARs) that are critical for nociceptive plasticity and behavioral sensitization. However, the components of SNAREs complex involved in spinal nociceptive processing remain largely unknown. Here we found that SNAP25, syntaxin4, VAMP2 and Munc18-1 were localized at postsynaptic sites and formed the complex in the superficial lamina of spinal cord dorsal horn of rats. The complex formation between these SNAREs components were accelerated after intraplantar injection of complete Freund's adjuvant (CFA), pharmacological removal of GABAergic inhibition or activation of NMDAR in intact rats. The increased SNAP25/syntaxin4/VAMP2/Munc18-1 interaction facilitated the surface delivery and synaptic accumulation of NMDAR during inflammatory pain. Disruption of the molecular interaction between SNAP25 with its SNARE partners by using a blocking peptide derived from the C-terminus of SNAP25 effectively repressed the surface and synaptic accumulation of GluN2B-containing NMDARs in CFA-injected rats. This peptide also alleviated inflammatory mechanical allodynia and thermal hypersensitivity. These data suggested that SNAREs complex assembly in spinal cord dorsal horn was involved in the inflammatory pain hypersensitivity through promoting NMDAR synaptic trafficking.

Learn More >

Search