I am a
Home I AM A Search Login

Papers of the Week

Papers: 4 Jan 2020 - 10 Jan 2020

Animal Studies, Pharmacology/Drug Development

2020 04



Attenuated dopamine receptor signaling in nucleus accumbens core in a rat model of chemically-induced neuropathy.


Selley DE, Lazenka MF, Sim-Selley LJ, Secor McVoy JR, Potter DN, Chartoff EH, Carlezon WA, Negus SS
Neuropharmacology. 2020 04; 166:107935.
PMID: 31917153.


Neuropathy is major source of chronic pain that can be caused by mechanically or chemically induced nerve injury. Intraplantar formalin injection produces local necrosis over a two-week period and has been used to model neuropathy in rats. To determine whether neuropathy alters dopamine (DA) receptor responsiveness in mesolimbic brain regions, we examined dopamine D-like and D-like receptor (DR) signaling and expression in male rats 14 days after bilateral intraplantar formalin injections into both rear paws. DR-mediated G-protein activation and expression of the DR long, but not short, isoform were reduced in nucleus accumbens (NAc) core, but not in NAc shell, caudate-putamen or ventral tegmental area of formalin-compared to saline-treated rats. In addition, DR-stimulated adenylyl cyclase activity was also reduced in NAc core, but not in NAc shell or prefrontal cortex, of formalin-treated rats, whereas DR expression was unaffected. Other proteins involved in dopamine neurotransmission, including dopamine uptake transporter and tyrosine hydroxylase, were unaffected by formalin treatment. In behavioral tests, the potency of a DR agonist to suppress intracranial self-stimulation (ICSS) was decreased in formalin-treated rats, whereas DR agonist effects were not altered. The combination of reduced DR expression and signaling in NAc core with reduced suppression of ICSS responding by a DR agonist suggest a reduction in D autoreceptor function. Altogether, these results indicate that intraplantar formalin produces attenuation of highly specific DA receptor signaling processes in NAc core of male rats and suggest the development of a neuropathy-induced allostatic state in both pre- and post-synaptic DA receptor function.