Neuropathic pain is a type of chronic pain induced by either central or peripheral nerve injury. MicroRNAs (miRs) have been recently linked to many diseases, including neuropathic pain. However, the role of miR-7a in neuropathic pain still remains elusive. Thus, we aim to investigate the effects of miR-7a on neuropathic pain based on the spinal nerve ligation (SNL) rat model. After establishment of SNL rat models, rats were infected with adeno associated virus (AAV)-neurofilament light polypeptide (NEFL), AAV-miR-7a or treated with metformin. The paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were assessed afterward, and the expression of miR-7a and NEFL as well as their interaction was determined. Subsequently, miR-7a was overexpressed or silenced in dorsal root ganglion (DRG) cells to investigate the role of miR-7a in neuropathic pain. Furthermore, the regulatory effect of NEFL on neuropathic pain was detected using plasmid overexpressing NEFL. SNL rat model exhibited upregulation of NEFL but downregulation of miR-7a. Additionally, NEFL accumulation or miR-7a inhibition decreased PWT and PWL. Then, NEFL accumulation or miR-7a inhibition was observed to increase the phosphorylation level of STAT3. miR-7a was found to directly target NEFL and downregulate NEFL. In addition, inhibiting the STAT3 signaling pathway was also revealed to increase PWT and PWL. Collectively, our study demonstrated that miR-7a ameliorated neuropathic pain via blocking the STAT3 signaling pathway by repressing NEFL. These findings, if taken further, can be of important clinical significance in treating patients with neuropathic pain.
Learn More >