I am a
Home I AM A Search Login

Animal Studies

Share this

Blockade of BDNF Signaling Attenuates Chronic Visceral Hypersensitivity in an IBS-like Rat Model.

Irritable bowel syndrome (IBS) is a common functional disease characterized by chronic abdominal pain and changes in bowel movements. Effective therapy for visceral hypersensitivity in IBS patients remains challenging. This study investigated the roles of brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB) and the effect of ANA-12 (a selective antagonist of TrkB) on chronic visceral hypersensitivity in an IBS-like rat model.

Learn More >

Attenuation of fear-conditioned analgesia in rats by monoacylglycerol lipase inhibition in the anterior cingulate cortex: potential role for CB receptors.

Improved understanding of brain mechanisms regulating endogenous analgesia is important from a fundamental physiological perspective and for identification of novel therapeutic strategies for pain. The endocannabinoid system plays a key role in stress-induced analgesia, including fear-conditioned analgesia (FCA), a potent form of endogenous analgesia. Here we studied the role of the endocannabinoid 2-arachidonoyl glycerol (2-AG) within the anterior cingulate cortex (ACC; a brain region implicated in the affective component of pain) in FCA in rats.

Learn More >

Chronotherapy of Non-Steroidal Anti-Inflammatory Drugs May Enhance Postoperative Recovery.

Postoperative pain relief is crucial for full recovery. With the ongoing opioid epidemic and the insufficient effect of acetaminophen on severe pain; non-steroidal anti-inflammatory drugs (NSAIDs) are heavily used to alleviate this pain. However, NSAIDs are known to inhibit postoperative healing of connective tissues by inhibiting prostaglandin signaling. Pain intensity, inflammatory mediators associated with wound healing and the pharmacological action of NSAIDs vary throughout the day due to the circadian rhythm regulated by the clock genes. According to this rhythm, most of wound healing mediators and connective tissue formation occurs during the resting phase, while pain, inflammation and tissue resorption occur during the active period of the day. Here we show, in a murine tibia fracture surgical model, that NSAIDs are most effective in managing postoperative pain, healing and recovery when drug administration is limited to the active phase of the circadian rhythm. Limiting NSAID treatment to the active phase of the circadian rhythm resulted in overexpression of circadian clock genes, such as Period 2 (Per2) at the healing callus, and increased serum levels of anti-inflammatory cytokines interleukin-13 (IL-13), interleukin-4 (IL-4) and vascular endothelial growth factor. By contrast, NSAID administration during the resting phase resulted in severe bone healing impairment.

Learn More >

An unbiased and efficient assessment of excitability of sensory neurons for analgesic drug discovery.

Alleviating chronic pain is challenging, due to lack of drugs that effectively inhibit nociceptors without off target effects on motor or central neurons. Dorsal root ganglia (DRG) contain nociceptive and non-nociceptive neurons. Drug screening on cultured DRG neurons, rather than cell lines, allows the identification of drugs most potent on nociceptors with no effects on non-nociceptors (as a proxy for unwanted side effects on CNS and motor neurons). However, screening using DRG neurons is currently a low-throughput process and there is a need for assays to speed this process for analgesic drug discovery. We previously showed that veratridine elicits distinct response profiles in sensory neurons. Here we show evidence that a veratridine-based calcium assay allows an unbiased and efficient assessment of a drug effect on nociceptors (targeted neurons) and non-nociceptors (non-targeted neurons). We confirmed the link between the oscillatory profile and nociceptors; and the slow-decay profile and non-nociceptors using three transgenic mouse lines of known pain phenotypes. We used the assay to show that blockers for Nav1.7 and Nav1.8 channels, which are validated targets for analgesics, affect non-nociceptors at concentrations needed to effectively inhibit nociceptors. However, a combination of low doses of both blockers had an additive effect on nociceptors without a significant effect on non-nociceptors, indicating that the assay can also be used to screen for combinations of existing or novel drugs for the greatest selective inhibition of nociceptors.

Learn More >

mTOR signaling intervention by Torin1 and XL388 in the insular cortex alleviates neuropathic pain.

Signaling by mammalian target of rapamycin (mTOR), a kinase regulator of protein synthesis, has been implicated in the development of chronic pain. The mTOR comprises two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Although effective inhibitors of mTORC1 and C2 have been developed, studies on the effect of these inhibitors related to pain modulation are still lacking. This study was conducted to determine the inhibitory effects of Torin1 and XL388 in an animal model of neuropathic pain. Seven days after neuropathic surgery, Torin1 or XL388 were microinjected into the insular cortex (IC) of nerve-injured animals and behavioral changes were assessed. Administration of Torin1 or XL388 into the IC significantly increased mechanical thresholds and reduced mechanical allodynia. At the immunoblotting results, Torin1 and XL388 significantly reduced phosphorylation of mTOR, 4E-BP1, p70S6K, and PKCα, without affecting Akt. These results strongly suggest that Torin1 and XL388 may attenuate neuropathic pain via inhibition of mTORC1 and mTORC2 in the IC.

Learn More >

Diverse sensitivities of TRPA1 from different mosquito species to thermal and chemical stimuli.

Temperature and odors profoundly affect the behavior of animals. Transient receptor potential channel, subfamily A, member 1 (TRPA1) functions as a polymodal nociceptor for sensing both vital environmental cues in insects. Mosquitoes are recognized as disease vectors, and many efforts have been devoted to investigations of their host-seeking behaviors and repellents. However, the physiological characteristics of mosquito TRPA1 have not been systematically studied. We identified multiple alternative splice variants of the TrpA1 gene from Anopheles gambiae, Anopheles stephensi, Aedes aegypti and Culex pipiens pallens mosquitoes. And we performed comparative analyses of the responses of mosquito TRPA1s to heat or chemical stimuli with calcium-imaging and whole-cell patch-clamp methods. Comparison of TRPA1 among four mosquito species from different thermal niches revealed that TRPA1 of Culex pipiens pallens inhabiting the temperate zone had a lower temperature threshold for heat-evoked activation, which was supported by the in vivo heat-avoidance test. Notably, the chemosensitivity of mosquito TRPA1 channels revealed differences not only between variants but also among species. Moreover, we discovered three novel mosquito TRPA1 agonists. Thermal niches selection and evolutionary trajectories significantly affect the functional properties of mosquito TRPA1, which represents a hallmark of the behaviors that may permit the design of improved mosquito control methods.

Learn More >

Pain and stress: functional evidence that supra-spinal mechanisms involved in pain-induced analgesia mediate stress-induced analgesia.

Analgesia induced by stressful and painful stimuli is an adaptive response during life-threatening situations. There is no evidence linking the mechanisms underlying them, while the former depends on the activation of stress-related brain pathways, the second depends on opioidergic mechanisms in the nucleus accumbens and on nicotinic cholinergic mechanisms in the rostral ventromedial medulla. In this study, we hypothesized that stress-induced analgesia is also dependent on opioidergic mechanisms in the nucleus accumbens and on nicotinic cholinergic mechanisms in the rostral ventromedial medulla. We used immobilization, a classical procedure to induce acute stress, and evaluated its ability to decrease the nociceptive responses induced either by carrageenan or by formalin in rats. Immobilization stress significantly decreased either carrageenan-induced hyperalgesia or formalin-induced tonic nociception in a time-dependent manner. This stress-induced analgesia is similar to pain-induced analgesia, as revealed by contrasting the antinociceptive effect induced by immobilization and by a forepaw injection of capsaicin. The administration of a µ-opioid receptor antagonist (CTOP, 0.5 µg) into the nucleus accumbens, as well as that of a nicotinic cholinergic receptor antagonist (mecamylamine, 0.6 µg) into the rostral ventromedial medulla, blocked immobilization stress-induced analgesia in both pain models. These results demonstrate that supraspinal mechanisms which are known to mediate pain-induced analgesia also mediate stress-induced analgesia. Therefore both forms of analgesia have overlapping mechanisms, probably recruited in response to the perception of danger.

Learn More >

Structure-based discovery of nonopioid analgesics acting through the α-adrenergic receptor.

Because nonopioid analgesics are much sought after, we computationally docked more than 301 million virtual molecules against a validated pain target, the α-adrenergic receptor (αAR), seeking new αAR agonists chemotypes that lack the sedation conferred by known αAR drugs, such as dexmedetomidine. We identified 17 ligands with potencies as low as 12 nanomolar, many with partial agonism and preferential G and G signaling. Experimental structures of αAR complexed with two of these agonists confirmed the docking predictions and templated further optimization. Several compounds, including the initial docking hit '9087 [mean effective concentration (EC) of 52 nanomolar] and two analogs, '7075 and PS75 (EC 4.1 and 4.8 nanomolar), exerted on-target analgesic activity in multiple in vivo pain models without sedation. These newly discovered agonists are interesting as therapeutic leads that lack the liabilities of opioids and the sedation of dexmedetomidine.

Learn More >

Neurokinins and their receptors in the rat trigeminal system: Differential localization and release with implications for migraine pain.

Substance P (SP) and calcitonin gene-related peptide (CGRP) have both been considered potential drug candidates in migraine therapy. In recent years, CGRP receptor inhibition has been established as an effective treatment, in particular as a prophylactic for chronic migraine. Curiously, inhibition of neurokinin receptor 1 (NK1R) failed to alleviate acute migraine attacks in clinical trials, and the neurokinins were consequently abandoned as potential antimigraine candidates. The reason behind this has remained enigmatic.Utilizing immunohistochemistry and semi-quantitative cell counts the expression of neurokinins and their associated receptors was examined in the rat trigeminal ganglion.Immunohistochemistry results revealed SP co-localization in CGRP positive neurons and C-fibres, where it mainly concentrated at boutons. Neurokinin A (NKA) was observed in a population of C-fibres and small neurons where it could co-localize with SP. In contrast, neurokinin B (NKB) did not co-localize with SP and was observed in large/medium sized neurons and Aδ-fibres. All neurokinin receptors (NK1-3R) were found to be expressed in a majority of trigeminal ganglion neurons and A-fibres.The functional release of SP and CGRP in the trigeminovascular system was stimulated with either 60 mM K+ or 100 nM capsaicin and measured with an enzyme-linked immunosorbent assay (ELISA). ELISA results established that SP can be released locally from trigeminovascular system. The released SP was comparatively minor compared to the CGRP release from stimulated dura mater, trigeminal ganglion neurons and fibres. We hypothesize that SP and CGRP signalling pathways may work in tandem to exacerbate painful stimuli in the TGV system.

Learn More >

A rat model to investigate quality of recovery after abdominal surgery.

Major advances in therapies to optimize recovery after surgery have been limited by the lack of an animal model that can mimic major domains of postoperative sickness behavior in humans. We hypothesized that the integration of commonly impaired domains of quality of recovery in humans could be reproduced in a rat model.

Learn More >

Search