I am a
Home I AM A Search Login

Animal Studies

Share this

Pain matrix shift in the rat brain following persistent colonic inflammation revealed by voxel-based statistical analysis.

Inflammatory bowel disease (IBD), mainly comprising Crohn's disease and ulcerative colitis, is characterized by chronic inflammation in the digestive tract. Approximately 60% of the patients experience abdominal pain during acute IBD episodes, which severely impairs their quality of life. Both peripheral and central mechanisms are thought to be involved in such abdominal pain in IBD. Although much attention has been paid to peripheral mechanisms of abdominal pain in IBD pathophysiology, the involvement of supraspinal mechanisms remains poorly understood. To address this issue, we investigated regional brain activity in response to colorectal distension (CRD) in normal and IBD model rats using voxel-based statistical analysis of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET imaging. The rat IBD model was generated by colorectal administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS), a chemical compound widely used to generate colitis. Tissue damage and inflammation were induced and dynamically changed with time after TNBS injection, while CRD-induced visceromotor response showed corresponding temporal changes. We found that characteristic brain activations were observed in response to visceral innocuous and noxious CRD and supraspinal nociception shared some physiological sensory pathway. Moreover, widespread brain regions were activated, and the functional coupling between the central medial thalamic nucleus (CMT) and anterior cingulate cortex (ACC) was enhanced after noxious CRD in IBD model of rats. Increased brain activity in the anterior insular cortex (aINS) and ACC positively correlated with noxious CRD-induced pain severity in normal and IBD rats respectively. These findings suggest that the pain matrix was shifted following persistent colonic inflammation, and thalamocortical sensitization in the pathway from CMT to ACC might be a central mechanism of the visceral hyperalgesia in IBD pathophysiology.

Learn More >

The effect of spontaneous osteoarthritis on conditioned pain modulation in the canine model.

Endogenous Pain Modulation (EPM) impairment is a significant contributor to chronic pain. Conditioned pain modulation (CPM) testing assesses EPM function. Osteoarthritic (OA) dogs are good translational models, but CPM has not been explored. Our aim was to assess EPM impairment in OA dogs compared to controls using CPM. We hypothesized that CPM testing would demonstrate EPM impairment in OA dogs compared to controls. Dogs with stifle/hip OA and demographically-matched controls were recruited. The pre-conditioning test stimulus, using mechanical/thermal quantitative sensory testing (MQST or TQST), were performed at the metatarsus. A 22N blunt probe (conditioning stimulus) was applied to the contralateral antebrachium for 2 minutes, followed by MQST or TQST (post-conditioning test stimulus). The threshold changes from pre to post-conditioning (∆MQST and ∆TQST) were compared between OA and control dogs. Twenty-four client-owned dogs (OA, n = 11; controls, n = 13) were recruited. The ∆MQST(p < 0.001) and ∆TQST(p < 0.001) increased in control dogs but not OA dogs (∆MQST p = 0.65; ∆TQST p = 0.76). Both ∆MQST(p < 0.001) and ∆TQST(p < 0.001) were different between the OA and control groups. These are the first data showing that EPM impairment is associated with canine OA pain. The spontaneous OA dog model may be used to test drugs that normalize EPM function.

Learn More >

Supraspinal Opioid Circuits Differentially Modulate Spinal Neuronal Responses in Neuropathic Rats.

Descending control from supraspinal neuronal networks onto spinal cord neurons can modulate nociceptionEndogenous opioids in these brain circuits participate in pain modulationA differential opioidergic role for brain nuclei involved in supraspinal pain modulation has not been previously reported WHAT THIS ARTICLE TELLS US THAT IS NEW: In vivo electrophysiologic recordings from the dorsal horn of the spinal cord in male rats reveal differential effects of morphine at the anterior cingulate cortex, right amygdala, and the ventromedial medulla on evoked pain responsesThese data differentiate supraspinal opioid circuit regulation of spinal nociceptive processing and suggest that the regulation of sensory and affective components of pain are likely separate BACKGROUND:: The anterior cingulate cortex and central nucleus of the amygdala connect widely with brainstem nuclei involved in descending modulation, including the rostral ventromedial medulla. Endogenous opioids in these circuits participate in pain modulation. The hypothesis was that a differential opioidergic role for the brain nuclei listed in regulation of spinal neuronal responses because separable effects on pain behaviors in awake animals were previously observed.

Learn More >

Loss of bhlha9 Impairs Thermotaxis and Formalin-Evoked Pain in a Sexually Dimorphic Manner.

C-LTMRs are known to convey affective aspects of touch and to modulate injury-induced pain in humans and mice. However, a role for these neurons in temperature sensation has been suggested, but not fully demonstrated. Here, we report that deletion of C-low-threshold mechanoreceptor (C-LTMR)-expressed bhlha9 causes impaired thermotaxis behavior and exacerbated formalin-evoked pain in male, but not female, mice. Positive modulators of GABA receptors failed to relieve inflammatory formalin pain and failed to decrease the frequency of spontaneous excitatory post-synaptic currents (sEPSCs) selectively in bhlha9 knockout (KO) males. This could be explained by a drastic change in the GABA content of lamina II inner inhibitory interneurons contacting C-LTMR central terminals. Finally, C-LTMR-specific deep RNA sequencing revealed more genes differentially expressed in male than in female bhlha9 KO C-LTMRs. Our data consolidate the role of C-LTMRs in modulation of formalin pain and provide in vivo evidence of their role in the discriminative aspects of temperature sensation.

Learn More >

The capsaicin receptor TRPV1 is the first line defense protecting from acute non damaging heat: a translational approach.

Pain is the vital sense preventing tissue damage by harmful noxious stimuli. The capsaicin receptor TRPV1 is activated by noxious temperatures, however, acute heat pain is only marginally affected in mice after TRPV1 knockout but completely eliminated in mice lacking TRPV1 positive fibers. Exploring contribution of candidate signal transduction mechanisms to heat pain in humans needs translational models.

Learn More >

Dynorphin and Enkephalin Opioid Peptides and Transcripts in Spinal Cord and Dorsal Root Ganglion During Peripheral Inflammatory Hyperalgesia and Allodynia.

Understanding molecular alterations associated with peripheral inflammation is a critical factor in selectively controlling acute and persistent pain. The present report employs in situ hybridization of the two opioid precursor mRNAs coupled with quantitative measurements of two peptides derived from the prodynorphin and proenkephalin precursor proteins: dynorphin A 1-8 and [Met]-enkephalin-Arg-Gly-Leu (MERGL). In dorsal spinal cord ipsilateral to the inflammation, dynorphin A 1-8 was elevated after inflammation, and persisted as long as the inflammation was sustained. Qualitative identification by HPLC and gel permeation chromatography revealed the major immunoreactive species in control and inflamed extracts to be dynorphin A 1-8. In situ hybridization in spinal cord after administration of the inflammatory agent, carrageenan, showed increased expression of prodynorphin (Pdyn) mRNA somatotopically in medial superficial dorsal horn neurons. The fold increase in preproenkephalin mRNA (Penk) was comparatively lower, although the basal expression is substantially higher than Pdyn. While Pdyn is not expressed in the dorsal root ganglion (DRG) in basal conditions, it can be induced by nerve injury, but not by inflammation alone. A bioinformatic meta-analysis of multiple nerve injury datasets confirmed Pdyn upregulation in DRG across different nerve injury models. These data support the idea that activation of endogenous opioids, notably dynorphin, is a dynamic indicator of persistent pain states in spinal cord and of nerve injury in DRG. [218/200] PERSPECTIVE: This is a systematic, quantitative assessment of dynorphin and enkephalin peptides and mRNA in dorsal spinal cord and dorsal root ganglia neurons in response to peripheral inflammation and axotomy. These studies form the foundational framework for understanding how endogenous spinal opioid peptides are involved in nociceptive circuit modulation. (48/50).

Learn More >

Glycosphingolipid biosynthesis pathway in the spinal cord and dorsal root ganglia during inflammatory pain: early and late changes in expression patterns of glycosyltransferase genes.

Glycosphingolipids (GSLs) are abundant, ceramide-containing lipids in the nervous system that play key functional roles in pain and inflammation. We measured gene expression (Ugcg, St3gal5, St8sia1, B4galNT1, Ugt8a, and Gal3st1) of glycosyltransferases involved in GSL synthesis in murine dorsal root ganglion (DRG) and spinal cord after complete Freund's adjuvant (CFA)-induced unilateral hind-paw inflammation (1 day vs. 15 days). Chronic inflammation (15 days) sensitized both ipsilateral and contralateral paws to pain. One day of induced unilateral hind-paw inflammation (1d-IUHI) increased Ugcg, St8sia1, B4galnt1, and Gal3st1 expression in ipsilateral cord, suggesting that sulfatide and b-series gangliosides were also elevated. In addition, 1d-IUHI increased Ugcg, st3gal5 and B4galnt1 expression in contralateral cord, suggesting that sulfatide and a-/b-series gangliosides were elevated. By contrast, 1d-IUHI decreased Ugcg, St3gal5, and St8sia1 expression bilaterally in the DRG, suggesting that b-series gangliosides were depressed. Since intrathecal injection of b-series ganglioside induced mechanical allodynia in naïve mice, it seems reasonable that b-series gangliosides synthesized from upregulated St8sia1 in the ipsilateral spinal cord are involved in mechanical allodynia. By contrast, chronic inflammation led to a decrease of Ugcg, St3gal5, B4galnt1, and Gal3st1 expression in spinal cord bilaterally and an increase of St8sia1 expression in the ipsilateral DRG, suggesting that a-/b-series gangliosides in the spinal cord decreased and b-series gangliosides in ipsilateral DRG increased. These changes in glycosyltransferase gene expression in the DRG and the spinal cord may contribute to the modification of pain sensitivity in both inflamed and non-inflamed tissues and the transition from early to chronic inflammatory pain.

Learn More >

Dichotomic effects of clinically used drugs on tumor growth, bone remodeling and pain management.

Improvements in the survival of breast cancer patients have led to the emergence of bone health and pain management as key aspects of patient's quality of life. Here, we used a female rat MRMT-1 model of breast cancer-induced bone pain to compare the effects of three drugs used clinically morphine, nabilone and zoledronate on tumor progression, bone remodeling and pain relief. We found that chronic morphine reduced the mechanical hypersensitivity induced by the proliferation of the luminal B aggressive breast cancer cells in the tumor-bearing femur and prevented spinal neuronal and astrocyte activation. Using MTT cell viability assay and MRI coupled to FDG PET imaging followed by ex vivo 3D µCT, we further demonstrated that morphine did not directly exert tumor growth promoting or inhibiting effects on MRMT-1 cancer cells but induced detrimental effects on bone healing by disturbing the balance between bone formation and breakdown. In sharp contrast, both the FDA-approved bisphosphonate zoledronate and the synthetic cannabinoid nabilone prescribed as antiemetics to patients receiving chemotherapy were effective in limiting the osteolytic bone destruction, thus preserving the bone architecture. The protective effect of nabilone on bone metabolism was further accompanied by a direct inhibition of tumor growth. As opposed to zoledronate, nabilone was however not able to manage bone tumor-induced pain and reactive gliosis. Altogether, our results revealed that morphine, nabilone and zoledronate exert disparate effects on tumor growth, bone metabolism and pain control. These findings also support the use of nabilone as an adjuvant therapy for bone metastases.

Learn More >

Structure-based discovery of nonopioid analgesics acting through the α-adrenergic receptor.

Because nonopioid analgesics are much sought after, we computationally docked more than 301 million virtual molecules against a validated pain target, the α-adrenergic receptor (αAR), seeking new αAR agonists chemotypes that lack the sedation conferred by known αAR drugs, such as dexmedetomidine. We identified 17 ligands with potencies as low as 12 nanomolar, many with partial agonism and preferential G and G signaling. Experimental structures of αAR complexed with two of these agonists confirmed the docking predictions and templated further optimization. Several compounds, including the initial docking hit '9087 [mean effective concentration (EC) of 52 nanomolar] and two analogs, '7075 and PS75 (EC 4.1 and 4.8 nanomolar), exerted on-target analgesic activity in multiple in vivo pain models without sedation. These newly discovered agonists are interesting as therapeutic leads that lack the liabilities of opioids and the sedation of dexmedetomidine.

Learn More >

Neurokinins and their receptors in the rat trigeminal system: Differential localization and release with implications for migraine pain.

Substance P (SP) and calcitonin gene-related peptide (CGRP) have both been considered potential drug candidates in migraine therapy. In recent years, CGRP receptor inhibition has been established as an effective treatment, in particular as a prophylactic for chronic migraine. Curiously, inhibition of neurokinin receptor 1 (NK1R) failed to alleviate acute migraine attacks in clinical trials, and the neurokinins were consequently abandoned as potential antimigraine candidates. The reason behind this has remained enigmatic.Utilizing immunohistochemistry and semi-quantitative cell counts the expression of neurokinins and their associated receptors was examined in the rat trigeminal ganglion.Immunohistochemistry results revealed SP co-localization in CGRP positive neurons and C-fibres, where it mainly concentrated at boutons. Neurokinin A (NKA) was observed in a population of C-fibres and small neurons where it could co-localize with SP. In contrast, neurokinin B (NKB) did not co-localize with SP and was observed in large/medium sized neurons and Aδ-fibres. All neurokinin receptors (NK1-3R) were found to be expressed in a majority of trigeminal ganglion neurons and A-fibres.The functional release of SP and CGRP in the trigeminovascular system was stimulated with either 60 mM K+ or 100 nM capsaicin and measured with an enzyme-linked immunosorbent assay (ELISA). ELISA results established that SP can be released locally from trigeminovascular system. The released SP was comparatively minor compared to the CGRP release from stimulated dura mater, trigeminal ganglion neurons and fibres. We hypothesize that SP and CGRP signalling pathways may work in tandem to exacerbate painful stimuli in the TGV system.

Learn More >

Search