I am a
Home I AM A Search Login

Animal Studies

Share this

Symmetry transitions during gating of the TRPV2 ion channel in lipid membranes.

Learn More >

CGRP Induces Differential Regulation of Cytokines from Satellite Glial Cells in Trigeminal Ganglia and Orofacial Nociception.

Neuron-glia interactions contribute to pain initiation and sustainment. Intra-ganglionic (IG) secretion of calcitonin gene-related peptide (CGRP) in the trigeminal ganglion (TG) modulates pain transmission through neuron-glia signaling, contributing to various orofacial pain conditions. The present study aimed to investigate the role of satellite glial cells (SGC) in TG in causing cytokine-related orofacial nociception in response to IG administration of CGRP. For that purpose, CGRP alone (10 μL of 10 M), Minocycline (5 μL containing 10 μg) followed by CGRP with one hour gap (Min + CGRP) were administered directly inside the TG in independent experiments. Rats were evaluated for thermal hyperalgesia at 6 and 24 h post-injection using an operant orofacial pain assessment device (OPAD) at three temperatures (37, 45 and 10 °C). Quantitative real-time PCR was performed to evaluate the mRNA expression of IL-1β, IL-6, TNF-α, IL-1 receptor antagonist (IL-1RA), sodium channel 1.7 (NaV 1.7, for assessment of neuronal activation) and glial fibrillary acidic protein (GFAP, a marker of glial activation). The cytokines released in culture media from purified glial cells were evaluated using antibody cytokine array. IG CGRP caused heat hyperalgesia between 6⁻24 h (paired- test, < 0.05). Between 1 to 6 h the mRNA and protein expressions of GFAP was increased in parallel with an increase in the mRNA expression of pro-inflammatory cytokines IL-1β and anti-inflammatory cytokine IL-1RA and NaV1.7 (one-way ANOVA followed by Dunnett's post hoc test, < 0.05). To investigate whether glial inhibition is useful to prevent nociception symptoms, Minocycline (glial inhibitor) was administered IG 1 h before CGRP injection. Minocycline reversed CGRP-induced thermal nociception, glial activity, and down-regulated IL-1β and IL-6 cytokines significantly at 6 h (-test, < 0.05). Purified glial cells in culture showed an increase in release of 20 cytokines after stimulation with CGRP. Our findings demonstrate that SGCs in the sensory ganglia contribute to the occurrence of pain via cytokine expression and that glial inhibition can effectively control the development of nociception.

Learn More >

Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury.

Sensory axons degenerate following separation from their cell body, but partial injury to peripheral nerves may leave the integrity of damaged axons preserved. We show that an endogenous ligand for the natural killer (NK) cell receptor NKG2D, Retinoic Acid Early 1 (RAE1), is re-expressed in adult dorsal root ganglion neurons following peripheral nerve injury, triggering selective degeneration of injured axons. Infiltration of cytotoxic NK cells into the sciatic nerve by extravasation occurs within 3 days following crush injury. Using a combination of genetic cell ablation and cytokine-antibody complex stimulation, we show that NK cell function correlates with loss of sensation due to degeneration of injured afferents and reduced incidence of post-injury hypersensitivity. This neuro-immune mechanism of selective NK cell-mediated degeneration of damaged but intact sensory axons complements Wallerian degeneration and suggests the therapeutic potential of modulating NK cell function to resolve painful neuropathy through the clearance of partially damaged nerves.

Learn More >

Structural Basis of Nav1.7 Inhibition by a Gating-Modifier Spider Toxin.

Voltage-gated sodium (Nav) channels are targets of disease mutations, toxins, and therapeutic drugs. Despite recent advances, the structural basis of voltage sensing, electromechanical coupling, and toxin modulation remains ill-defined. Protoxin-II (ProTx2) from the Peruvian green velvet tarantula is an inhibitor cystine-knot peptide and selective antagonist of the human Nav1.7 channel. Here, we visualize ProTx2 in complex with voltage-sensor domain II (VSD2) from Nav1.7 using X-ray crystallography and cryoelectron microscopy. Membrane partitioning orients ProTx2 for unfettered access to VSD2, where ProTx2 interrogates distinct features of the Nav1.7 receptor site. ProTx2 positions two basic residues into the extracellular vestibule to antagonize S4 gating-charge movement through an electrostatic mechanism. ProTx2 has trapped activated and deactivated states of VSD2, revealing a remarkable ∼10 Å translation of the S4 helix, providing a structural framework for activation gating in voltage-gated ion channels. Finally, our results deliver key templates to design selective Nav channel antagonists.

Learn More >

A Mast-Cell-Specific Receptor Mediates Neurogenic Inflammation and Pain.

Mast cells can be found in close proximity to peripheral nerve endings where, upon activation, they release a broad range of pro-inflammatory cytokines and chemokines. However, the precise mechanism underlying this so-called neurogenic inflammation and associated pain has remained elusive. Here we report that the mast-cell-specific receptor Mrgprb2 mediates inflammatory mechanical and thermal hyperalgesia and is required for recruitment of innate immune cells at the injury site. We also found that the neuropeptide substance P (SP), an endogenous agonist of Mrgprb2, facilitates immune cells' migration via Mrgprb2. Furthermore, SP activation of the human mast cell led to the release of multiple pro-inflammatory cytokines and chemokines via the human homolog MRGPRX2. Surprisingly, the SP-mediated inflammatory responses were independent of its canonical receptor, neurokinin-1 receptor (NK-1R). These results identify Mrgprb2/X2 as an important neuroimmune modulator and a potential target for treating inflammatory pain.

Learn More >

Mechanically Activated Piezo Channels Mediate Touch and Suppress Acute Mechanical Pain Response in Mice.

Touch and mechanical pain represent distinct, but interactive, modalities of mechanosensation. However, the molecular mechanisms underlying these mechanotransduction processes remain incompletely understood. Here, we show that deletion of the mechanically activated and rapidly adapting Piezo2 channel in a portion of the low-threshold mechanoreceptors and a majority of the IB4-positive nociceptors impairs touch but sensitizes mechanical pain in mice. Ectopic expression of the Piezo2 homolog, the intermediately adapting Piezo1 channel, in sensory neurons can sensitize touch in normal mice and rescue defective touch of the Piezo2-knockout mice. Broad expression of Piezo1 in sensory neurons decreases, rather than evokes, mechanical pain responses. Together, our data suggest that Piezo channels can mediate touch and indirectly suppress acute pain. Tuning Piezo-mediated touch sensitivity allows us to recapitulate the inhibitory effect of touch on acute pain in mouse models.

Learn More >

Interaction between NMDA Receptor- and Endocannabinoid-Mediated Modulation of Nociceptive Synapses.

Nociceptors, sensory neurons that detect damage or potential damage to the body, are the first stage of communicating noxious stimuli from the periphery to central nervous system (CNS). In this study, long-term potentiation (LTP) in the CNS of the medicinal leech, Hirudo verbana, was examined, taking advantage of the ability to selectively record from nociceptive synapses in this model organism. High frequency stimulation (HFS) of nociceptors produced a persistent increase in synaptic transmission and this LTP was both NMDA receptor-mediated and synapse-specific. Surprisingly, inhibition of NMDA receptors during HFS "uncovered" a persistent form of depression. This long-term depression (LTD) was mediated by the endocannabinoid 2-arachidonoyl glycerol (2-AG) acting on a TRPV (transient receptor potential vanilloid) -like channel. These observations suggest that (1) NMDA receptor mediated LTP is observed in nociceptors across both vertebrate and invertebrate phyla and (2) there may be an interaction between NMDA receptor-mediated and endocannabinoid-mediated forms of synaptic plasticity in nociceptors. Specifically, the NMDA receptor mediated processes may suppress endocannabinoid signaling. Such findings could be significant for understanding cellular mechanisms behind nociceptive sensitization and perhaps their contribution to chronic pain.

Learn More >

TIMP-1 attenuates the development of cutaneous inflammation-induced hypersensitivity.

Learn More >

Persistent pain intensifies recall of consolidated fear memories.

Ensembles of principal neurons in the basolateral amygdala (BLA) generate the initial engrams for fear memories, while projections from the BLA to the medial prefrontal cortex (mPFC) are essential for the encoding, transfer and storage of remote fear memories. We tested the effects of chronic pain on remote fear memories in mice. Male mice underwent classic fear conditioning by pairing a single tone (conditional stimulus, CS) with a single electric foot shock (unconditional stimulus, US). Sciatic nerve constriction was used to induce neuropathic pain at various time points before or after the fear conditioning. The mice with sciatic nerve cuffs implanted 48 h after the fear conditioning showed an increased freezing response to CS when compared to mice without cuffs or when compared to mice in which the nerve cuffing was performed 48 h before the fear conditioning. The enhancing effect of pain on consolidated fear memory was further tested and mice in which the nerve cuffing was performed 14 days after the fear conditioning also showed an increased fear response when tested 56 days later. We used immunostaining to detect morphological changes in the BLA that could suggest a mechanism for the observed increase in fear response. We found an increased number of calbindin/parvalbumin positive neurons in the BLA and increased perisomatic density of GAD65 on projection neurons that connect BLA to mPFC in mice with nerve cuffs. Despite the strong increase of c-Fos expression in BLA and mPFC that was induced by fear recall, neither the BLA to mPFC nor the mPFC to BLA projection neurons were activated in mice with nerve cuffs. Furthermore, non-injured mice had an increased fear response when BLA to mPFC projections were inhibited by a chemogenetic method. In conclusion, this study provides evidence that persistent pain has a significant impact on consolidated fear memories. Very likely the underlying mechanism for this phenomenon is increased inhibitory input onto the BLA to mPFC projection neurons, possibly from neurons with induced parvalbumin expression. Conceivably, the increased fear response to consolidated fear memory is a harbinger for the later development of anxiety and depression symptoms associated with chronic pain.

Learn More >

Anti-NGF treatment can reduce chronic neuropathic pain by changing peripheral mediators and brain activity in rats.

Neuropathic pain is driven by abnormal peripheral and central processing, and treatments are insufficiently effective. Antibodies against nerve growth factor (anti-NGF) have been investigated as a potent analgesic treatment for numerous conditions. However, the peripheral and brain effects of anti-NGF in neuropathic pain remain unknown. We examined the effectiveness of anti-NGF in reducing chronic pain by local administration in a rat model of sciatic constriction injury (CCI). NGF and substance P in the dorsal root ganglion (DRG) and spinal cord were evaluated. Neuronal activation was measured using c-Fos in the anterior cingulate cortex and ventrolateral periaqueductal gray. At 14 days after CCI, anti-NGF promoted a significant dose-dependent improvement in mechanical threshold, thermal withdrawal latency, and cold sensitivity, lasting for 5 h. NGF upregulation in the DRG and spinal cord after CCI was decreased by anti-NGF, while substance P was increased only in the DRG, and the treatment reduced it. Anti-NGF induced a significant reduction of neuronal activation in the anterior cingulate cortex, but not in the ventrolateral periaqueductal gray. This study provides the first evidence of the anti-NGF effects on brain activity. Thus, our findings suggest that anti-NGF improves chronic neuropathic pain, acting directly on peripheral sensitization and indirectly on central sensitization.

Learn More >

Search