I am a
Home I AM A Search Login

Animal Studies

Share this

Motor cortex and pain control: exploring the descending relay analgesic pathways and spinal nociceptive neurons in healthy conscious rats.

Motor cortex stimulation (MCS) is an effective therapy for refractory neuropathic pain. MCS increases the nociceptive threshold in healthy rats via endogenous opioids, inhibiting thalamic nuclei and activating the periaqueductal gray. It remains unclear how the motor cortex induces top-down modulation of pain in the absence of persistent pain. Here, we investigated the main nuclei involved in the descending analgesic pathways and the spinal nociceptive neurons in rats that underwent one session of MCS and were evaluated with the paw pressure nociceptive test. The pattern of neuronal activation in the dorsal raphe nucleus (DRN), nucleus raphe magnus (NRM), locus coeruleus (LC), and dorsal horn of the spinal cord (DHSC) was assessed by immunoreactivity (IR) for Egr-1 (a marker of activated neuronal nuclei). IR for serotonin (5HT) in the DRN and NRM, tyrosine hydroxylase (TH) in the LC, and substance P (SP) and enkephalin (ENK) in the DHSC was also evaluated. MCS increased the nociceptive threshold of the animals; this increase was accompanied by activation of the NRM, while DRN activation was unchanged. However, cortical stimulation induced an increase in 5HT-IR in both serotonergic nuclei. MCS did not change the activation pattern or TH-IR in the LC, and it inhibited neuronal activation in the DHSC without altering SP or ENK-IR. Taken together, our results suggest that MCS induces the activation of serotonergic nuclei as well as the inhibition of spinal neurons, and such effects may contribute to the elevation of the nociceptive threshold in healthy rats. These results allow a better understanding of the circuitry involved in the antinociceptive top-down effect induced by MCS under basal conditions, reinforcing the role of primary motor cortex in pain control.

Learn More >

Structures of human Na1.7 channel in complex with auxiliary subunits and animal toxins.

Voltage-gated sodium channel Na1.7 represents a promising target for pain relief. Here we report the cryo-EM structures of the human Na1.7-β1-β2 complex bound to two combinations of pore blockers and gating modifier toxins (GMTs), tetrodotoxin with Protoxin-II and saxitoxin with Huwentoxin-IV, both determined at overall resolutions of 3.2 Å. The two structures are nearly identical except for minor shifts of VSD, whose S3-S4 linker accommodates the two GMTs in a similar manner. One additional Protoxin-II sits on top of the S3-S4 linker in VSD The structures may represent an inactivated state with all four VSDs "up" and the intracellular gate closed. The structures illuminate the path toward mechanistic understanding of the function and disease of Na1.7 and establish the foundation for structure-aided development of analgesics.

Learn More >

Anti-allodynic effects of the selective NaV1.7 inhibitor Pn3a in a mouse model of acute post-surgical pain: evidence for analgesic synergy with opioids and baclofen.

Pain is the leading cause of disability in the developed world but remains a poorly treated condition. Specifically, post-surgical pain continues to be a frequent and undermanaged condition. Here, we investigate the analgesic potential of pharmacological NaV1.7 inhibition in a mouse model of acute post-surgical pain, based on incision of the plantar skin and underlying muscle of the hind paw. We demonstrate that local and systemic treatment with the selective NaV1.7 inhibitor μ-theraphotoxin-Pn3a is effectively anti-allodynic in this model and completely reverses mechanical hypersensitivity in the absence of motor adverse effects. In addition, the selective NaV1.7 inhibitors ProTx-II and PF-04856264 as well as the clinical candidate CNV1014802 also reduced mechanical allodynia. Interestingly, co-administration of the opioid receptor antagonist naloxone completely reversed analgesic effects of Pn3a, indicating an involvement of endogenous opioids in the analgesic activity of Pn3a. Additionally, we found super-additive antinociceptive effects of sub-therapeutic Pn3a doses not only with the opioid oxycodone but also with the GABAB receptor agonist baclofen. Transcriptomic analysis of gene expression changes in dorsal root ganglia of mice post-surgery did not reveal any changes in mRNA expression of endogenous opioids or opioid receptors, however several genes involved in pain, including Runx1 (Runt related transcription factor 1), Cacna1a (CaV2.1) and Cacna1b (CaV2.2) were downregulated. In summary, these findings suggest that pain after surgery can be successfully treated with NaV1.7 inhibitors alone or in combination with baclofen or opioids, which may present a novel and safe treatment strategy for this frequent and poorly managed condition.

Learn More >

Gut-innervating nociceptor neurons protect against enteric infection by modulating the microbiota and Peyer’s patch microfold cells.

Learn More >

Dorsal horn gastrin-releasing peptide expressing neurons transmit spinal itch but not pain signals.

Gastrin-releasing peptide (GRP) is a spinal itch transmitter expressed by a small population of dorsal horn interneurons (GRP neurons). The contribution of these neurons to spinal itch relay is still only incompletely understood and their potential contribution to pain-related behaviors remains controversial. Here, we have addressed this question in a series of experiments performed in GRP::cre and GRP::eGFP transgenic male mice. We combined behavioral tests with neuronal circuit tracing, morphology, chemogenetics, optogenetics, and electrophysiology to obtain a more comprehensive picture. We found that GRP neurons form a rather homogenous population of central cell-like excitatory neurons located in lamina II of the superficial dorsal horn. Multicolor high-resolution confocal microscopy and optogenetic experiments demonstrated that GRP neurons receive direct input from MrgprA3-positive pruritoceptors. Anterograde herpes simplex virus-based neuronal tracing initiated from GRP neurons revealed ascending polysynaptic projections to distinct areas and nuclei in the brainstem, midbrain, thalamus, and the somatosensory cortex. Spinally restricted ablation of GRP neurons reduced itch-related behaviors to different pruritogens while their chemogenetic excitation elicited itch-like behaviors and facilitated responses to several pruritogens. By contrast, responses to painful stimuli remained unaltered. These data confirm a critical role of dorsal horn GRP neurons in spinal itch transmission, but do not support a role in pain. Dorsal horn GRP neurons serve a well-established function in the spinal transmission of pruritic (itch) signals. A potential role in the transmission of nociceptive (pain) signals has remained controversial. Our results provide further support for a critical role of dorsal horn GRP neurons in itch circuits, but we failed to find evidence supporting a role in pain.

Learn More >

Regulatory T cells and their derived cytokine, interleukin-35, reduce pain in experimental autoimmune encephalomyelitis.

Sensory problems, such as neuropathic pain, are common and debilitating symptoms in multiple sclerosis (MS), an autoimmune inflammatory disorder of the central nervous system (CNS). Regulatory T (Treg) cells are critical for maintaining immune homeostasis, however, their role in MS-associated pain remains unknown. Here, we demonstrate that Treg cell ablation is sufficient to trigger experimental autoimmune encephalomyelitis (EAE) and facial allodynia in immunised female mice. In EAE-induced female mice, adoptive transfer of Treg cells and spinal delivery of the Treg cell cytokine interleukin (IL)-35 significantly reduced facial stimulus-evoked pain and spontaneous pain independent of disease severity, and increased myelination of the facial nociceptive pathway. The effects of intrathecal IL-35 therapy were Treg cell-dependent, and were associated with upregulated IL-10 expression in CNS-infiltrating lymphocytes, and reduced monocyte infiltration in the trigeminal afferent pathway. Taken together, we present evidence for a beneficial role of Treg cells and IL-35 in attenuating pain associated with EAE, independently of motor symptoms, by decreasing neuroinflammation and increasing myelination.Pain is a highly prevalent symptom affecting the majority of multiple sclerosis (MS) patients and dramatically affects overall health-related quality-of-life, yet represents a research area that has been largely ignored. Here we identify, for the first time, a role for regulatory T cells and interleukin-35 in suppressing facial allodynia and facial grimacing in animals with experimental autoimmune encephalomyelitis (EAE). We demonstrate that spinal delivery of regulatory T cells and interleukin-35 reduces pain associated with EAE by decreasing neuroinflammation and increasing myelination, independently of motor symptoms. These findings increase our understanding of the mechanisms underlying pain in EAE, and suggest potential treatment strategies for pain relief in MS.

Learn More >

The gap junction inhibitor INI-0602 attenuates mechanical allodynia and depression-like behaviors induced by spared nerve injury in rats.

Gap junctions (GJs) are novel molecular targets for pain therapeutics due to their pain-promoting function. INI-0602, a new GJ inhibitor, exerts a neuroprotective role, while its role in neuropathic pain is unclear. The objective was to investigate the analgesic role and mechanisms of INI-0602 in neuropathic pain induced by spared nerve injury (SNI), and whether INI-0602 attenuated pain-induced depression-like behaviors. Rats were randomly assigned to saline treatment groups (sham+NS and SNI+NS) or INI-0602 treatment groups (sham+INI-0602 and SNI+INI-0602). The von Frey test was used to assess pain behavior, and the sucrose preference test, the forced swimming test, and the tail suspension test were used to assess depression-like behaviors. Gap junction intercellular communication (GJIC) was measured by parachute assay. Western blots were used to determine the protein expression. In vitro, INI-0602 significantly suppressed GJIC by decreasing connexin43 and connexin32 expression. In vivo, INI-0602 significantly suppressed mechanical allodynia during initiation (7 days after SNI) and the maintenance phase (21 days after SNI) and simultaneously attenuated accompanying depression-like behaviors. Furthermore, INI-0602 markedly suppressed the activation of astrocytes and microglia on days 7 and 21 by reducing GJIC. Finally, INI-0602 reversed the changes in the brain-derived neurotrophic factor and Nr2b subunits of the N-methyl-D-aspartate receptor in SNI rats, suggesting that these effects of INI-0602 were related to its analgesic effect. Our findings demonstrated that blocking GJs with INI-0602 attenuated mechanical pain hypersensitivity and related depression-like behaviors in SNI rats by reducing glial activation.

Learn More >

Unveiling functional motions based on point mutations in biased signaling systems: A normal mode study on Nerve Growth Factor bound to TrkA.

Learn More >

Single cell multi-omics analysis reveals novel roles for DNA methylation in sensory neuron injury responses.

Learn More >

The polyadenylation inhibitor cordycepin reduces pain, inflammation and joint pathology in rodent models of osteoarthritis.

Clinically, osteoarthritis (OA) pain is significantly associated with synovial inflammation. Identification of the mechanisms driving inflammation could reveal new targets to relieve this prevalent pain state. Herein, a role of polyadenylation in OA synovial samples was investigated, and the potential of the polyadenylation inhibitor cordycepin (3' deoxyadenosine) to inhibit inflammation as well as to reduce pain and structural OA progression were studied. Joint tissues from people with OA with high or low grade inflammation and non-arthritic post-mortem controls were analysed for the polyadenylation factor CPSF4 and inflammatory markers. Effects of cordycepin on pain behavior and joint pathology were studied in models of OA (intra-articular injection of monosodium iodoacetate in rats and surgical destabilisation of the medial meniscus in mice). Human monocyte-derived macrophages and a mouse macrophage cell line were used to determine effects of cordycepin on nuclear localisation of the inflammatory transcription factor NFĸB and polyadenylation factors (WDR33 and CPSF4). CPSF4 and NFκB expression were increased in synovia from OA patients with high grade inflammation. Cordycepin reduced pain behaviour, synovial inflammation and joint pathology in both OA models. Stimulation of macrophages induced nuclear localisation of NFĸB and polyadenylation factors, effects inhibited by cordycepin. Knockdown of polyadenylation factors also prevented nuclear localisation of NFĸB. The increased expression of polyadenylation factors in OA synovia indicates a new target for analgesia treatments. This is supported by the finding that polyadenylation factors are required for inflammation in macrophages and by the fact that the polyadenylation inhibitor cordycepin attenuates pain and pathology in models of OA.

Learn More >

Search