I am a
Home I AM A Search Login

Animal Studies

Share this

Location and Plasticity of the Sodium Spike Initiation Zone in Nociceptive Terminals In Vivo.

Nociceptive terminals possess the elements for detecting, transmitting, and modulating noxious signals, thus being pivotal for pain sensation. Despite this, a functional description of the transduction process by the terminals, in physiological conditions, has not been fully achieved. Here, we studied how nociceptive terminals in vivo convert noxious stimuli into propagating signals. By monitoring noxious-stimulus-induced Ca dynamics from mouse corneal terminals, we found that initiation of Na channel (Nav)-dependent propagating signals takes place away from the terminal and that the starting point for Nav-mediated propagation depends on Nav functional availability. Acute treatment with the proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) resulted in a shift of the location of Nav involvement toward the terminal, thus increasing nociceptive excitability. Moreover, a shift of Nav involvement toward the terminal occurs in corneal hyperalgesia resulting from acute photokeratitis. This dynamic change in the location of Nav-mediated propagation initiation could underlie pathological pain hypersensitivity.

Learn More >

Central Processing of Itch in the Midbrain Reward Center.

Itch is an aversive sensation that evokes a desire to scratch. Paradoxically, scratching the itch also produces a hedonic experience. The specific brain circuits processing these different aspects of itch, however, remain elusive. Here, we report that GABAergic (GABA) and dopaminergic (DA) neurons in the ventral tegmental area (VTA) are activated with different temporal patterns during acute and chronic itch. DA neuron activation lags behind GABA neurons and is dependent on scratching of the itchy site. Optogenetic manipulations of VTA GABA neurons rapidly modulated scratching behaviors through encoding itch-associated aversion. In contrast, optogenetic manipulations of VTA DA neurons revealed their roles in sustaining recurrent scratching episodes through signaling scratching-induced reward. A similar dichotomy exists for the role of VTA in chronic itch. These findings advance understanding of circuit mechanisms of the unstoppable itch-scratch cycles and shed important insights into chronic itch therapy.

Learn More >

Kappa Opioid Receptors Drive a Tonic Aversive Component of Chronic Pain.

Pain is a multidimensional experience and negative affect, or how much the pain is "bothersome", significantly impacts the sufferers' quality of life. It is well established that the kappa opioid system contributes to depressive and dysphoric states, but whether this system contributes to the negative affect precipitated by the occurrence of chronic pain remains tenuous. Using a model of persistent pain, we show by quantitative RT-PCR, florescence hybridization, western blotting and GTPgS autoradiography an upregulation of expression and the function of kappa opioid receptors (KORs) and its endogenous ligand dynorphin in the mesolimbic circuitry in animals with chronic pain compared to surgical controls. Using microdialysis and microinjection of drugs into the mesolimbic dopamine system, we demonstrate that inhibiting KORs reinstates evoked dopamine release and reward related behaviors in chronic pain animals. Chronic pain enhanced KOR agonist-induced place aversion in a sex-dependent manner. Using various place preference paradigms, we show that activation of KORs drives pain aversive states in male but not female mice. However, KOR antagonist treatment was effective in alleviating anxiogenic and depressive affective-like behaviors in both sexes. Finally, ablation of KORs from dopamine neurons using AAV-TH-cre in KOR mice prevented pain-induced aversive states as measured by place aversion assays. Our results strongly support the use of KOR antagonists as therapeutic adjuvants to alleviate the emotional, tonic-aversive component of chronic pain, which is argued to be the most significant component of the pain experience that impacts patients' quality of life.We show that KORs are sufficient to drive the tonic-aversive component of chronic pain – the emotional component of pain that is argued to significantly impact a patient's quality of life. The impact of our study is broadly relevant to affective disorders associated with disruption of reward circuitry and thus likely contributes to many of the devastating sequelae of chronic pain, including the poor response to treatment of many patients, debilitating affective disorders (other disorders including anxiety and depression that demonstrate high co-morbidity with chronic pain) and substance abuse. Indeed, co-existing psychopathology increases pain intensity, pain-related disability and effectiveness of treatments (Jamison and Edwards, 2013).

Learn More >

MRGPRX4 is a G protein-coupled receptor activated by bile acids that may contribute to cholestatic pruritus.

Patients suffering from cholestasis, the slowing or stoppage of bile flow, commonly report experiencing an intense, chronic itch. Numerous pruritogens are up-regulated in cholestatic patient sera, including bile acids (BAs). Acute injection of BAs results in itch in both mice and humans, and BA-modulating therapy is effective in controlling patient itch. Here, we present evidence that human sensory neuron-expressed Mas-related G protein-coupled receptor X4 (MRGPRX4), an orphan member of the family of GPCRs, is a BA receptor. Using Ca imaging, we determined that pathophysiologically relevant levels of numerous BAs activated MRGPRX4. No mouse Mrgpr orthologs were activated by BAs. To assess the in vivo relevance of BA activation of MRGPRX4, we generated a humanized mouse with targeted expression of MRGPRX4 in itch-encoding sensory neurons. BAs activated MRGPRX4 sensory neurons at higher levels compared with WT neurons. Compared with control animals, MRGPRX4 mice scratched more upon acute injection of BAs and in a model of cholestatic itch. Overall, these data suggest that targeting MRGPRX4 is a promising strategy for alleviating cholestatic itch.

Learn More >

Sphingosine-1-phosphate receptor 1 activation in astrocytes contributes to neuropathic pain.

Neuropathic pain afflicts millions of individuals and represents a major health problem for which there is limited effective and safe therapy. Emerging literature links altered sphingolipid metabolism to nociceptive processing. However, the neuropharmacology of sphingolipid signaling in the central nervous system in the context of chronic pain remains largely unexplored and controversial. We now provide evidence that sphingosine-1-phosphate (S1P) generated in the dorsal horn of the spinal cord in response to nerve injury drives neuropathic pain by selectively activating the S1P receptor subtype 1 (S1PR1) in astrocytes. Accordingly, genetic and pharmacological inhibition of S1PR1 with multiple antagonists in distinct chemical classes, but not agonists, attenuated and even reversed neuropathic pain in rodents of both sexes and in two models of traumatic nerve injury. These S1PR1 antagonists retained their ability to inhibit neuropathic pain during sustained drug administration, and their effects were independent of endogenous opioid circuits. Moreover, mice with astrocyte-specific knockout of did not develop neuropathic pain following nerve injury, thereby identifying astrocytes as the primary cellular substrate of S1PR1 activity. On a molecular level, the beneficial reductions in neuropathic pain resulting from S1PR1 inhibition were driven by interleukin 10 (IL-10), a potent neuroprotective and anti-inflammatory cytokine. Collectively, our results provide fundamental neurobiological insights that identify the cellular and molecular mechanisms engaged by the S1PR1 axis in neuropathic pain and establish S1PR1 as a target for therapeutic intervention with S1PR1 antagonists as a class of nonnarcotic analgesics.

Learn More >

Activation of Mast-Cell-Expressed Mas-Related G-Protein-Coupled Receptors Drives Non-histaminergic Itch.

Classical itch studies have focused on immunoglobulin E (IgE)-mediated mast cell activation and histamine release. Recently, members of the Mas-related G-protein-coupled receptor (Mrgpr) family have been identified as mast cell receptors, but their role in itch is unclear. Here, we report that mast cell activation via Mrgprb2 evoked non-histaminergic itch in mice independently of the IgE-Fc epsilon RI (FcεRI)-histamine axis. Compared with IgE-FcεRI stimulation, Mrgprb2 activation of mast cells was distinct in both released substances (histamine, serotonin, and tryptase) and the pattern of activated itch-sensory neurons. Mrgprb2 deficiency decreased itch in multiple preclinical models of allergic contact dermatitis (ACD), a pruritic inflammatory skin disorder, and both mast cell number and PAMP1-20 concentrations (agonist of the human Mrgprb2 homolog, MRGPRX2) were increased in human ACD skin. These findings suggest that this pathway may represent a therapeutic target for treating ACD and mast-cell-associated itch disorders in which antihistamines are ineffective.

Learn More >

Adjacent intact nociceptive neurons drive the acute outburst of pain following peripheral axotomy.

Injury of peripheral nerves may quickly induce severe pain, but the mechanism remains obscure. We observed a rapid onset of spontaneous pain and evoked pain hypersensitivity after acute transection of the L5 spinal nerve (SNT) in awake rats. The outburst of pain was associated with a rapid development of spontaneous activities and hyperexcitability of nociceptive neurons in the adjacent uninjured L4 dorsal root ganglion (DRG), as revealed by both in vivo electrophysiological recording and high-throughput calcium imaging in vivo. Transection of the L4 dorsal root or intrathecal infusion of aminobutyrate aminotransferase inhibitor attenuated the spontaneous activity, suggesting that retrograde signals from the spinal cord may contribute to the sensitization of L4 DRG neurons after L5 SNT. Electrical stimulation of low-threshold afferents proximal to the axotomized L5 spinal nerve attenuated the spontaneous activities in L4 DRG and pain behavior. These findings suggest that peripheral axotomy may quickly induce hyperexcitability of uninjured nociceptors in the adjacent DRG that drives an outburst of pain.

Learn More >

Morphine immunomodulation prolongs inflammatory and postoperative pain while the novel analgesic ZH853 accelerates recovery and protects against latent sensitization.

Numerous studies have identified the proinflammatory, pronociceptive effects of morphine which ultimately exacerbate pain. Our novel endomorphin analog ZH853 does not produce proinflammatory effects on its own and gives potent, long-lasting analgesia. This study investigates whether ZH853's lack of interaction with the neuroimmune system reduces the risk of prolonged pain.

Learn More >

Acid and inflammatory sensitisation of naked mole-rat colonic afferent nerves.

Learn More >

CB2 receptor deletion on myeloid cells enhanced mechanical allodynia in a mouse model of neuropathic pain.

Neuropathic pain can develop after nerve injury, leading to a chronic condition with spontaneous pain and hyperalgesia. Pain is typically restricted to the side of the injured nerve, but may occasionally spread to the contralateral side, a condition that is often referred to as mirror-image pain. Mechanisms leading to mirror-image pain are not completely understood, but cannabinoid CB2 receptors have been implicated. In this study, we use genetic mouse models to address the question if CB2 receptors on neurons or on microglia/macrophages are involved. First, we show that a GFP reporter protein under control of the CB2 promoter is induced upon partial sciatic nerve ligation in spinal cord, dorsal root ganglia, and highest in sciatic nerve macrophages, but not in neurons. Mice which lack CB2 receptors specifically on myeloid cells (microglia, macrophages) developed a mirror-image allodynia [treatment F = 45.69, p < 0.0001] similar to constitutive CB2 receptor knockout mice [treatment F = 92.41, p < 0.0001]. Such a phenotype was not observed after the deletion of CB2 from neurons [treatment F = 0.1315, p = 0.7180]. This behavioral pain phenotype was accompanied by an increased staining of microglia in the dorsal horn of the spinal cord, as evidenced by an enhanced Iba 1 expression [CB2KO, p = 0.0175; CB2-LysM, p = 0.0425]. Similarly, myeloid-selective knockouts showed an increased expression of the leptin receptor in the injured ipsilateral sciatic nerve, thus further supporting the notion that leptin signaling contributes to the increased neuropathic pain responses of CB2 receptor knockout mice. We conclude that CB2 receptors on microglia and macrophages, but not on neurons, modulate neuropathic pain responses.

Learn More >

Search