I am a
Home I AM A Search Login

Animal Studies

Share this

Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis.

Learn More >

Physical Activity Induces Nucleus Accumbens Genes Expression Changes Preventing Chronic Pain Susceptibility Promoted by High-Fat Diet and Sedentary Behavior in Mice.

Learn More >

Genetic behavioral screen identifies an orphan anti-opioid system.

Opioids target the μ-opioid receptor (MOR) to produce unrivaled pain management but their addictive properties can lead to severe abuse. We developed a whole animal behavioral platform for unbiased discovery of genes influencing opioid responsiveness. Using forward genetics in we identified a conserved orphan receptor, GPR139, with anti-opioid activity. GPR139 is coexpressed with MOR in opioid-sensitive brain circuits, binds to MOR and inhibits signaling to G proteins. Deletion of GPR139 in mice enhanced opioid-induced inhibition of neuronal firing to modulate morphine-induced analgesia, reward, and withdrawal. Thus, GPR139 could be a useful target for increasing opioid safety. These results also demonstrate the potential of as a scalable platform for genetic discovery of GPCR signaling principles.

Learn More >

AMP-activated protein kinase (AMPK) activator drugs reduce mechanical allodynia in a mouse model of low back pain.

Intervertebral disc herniation is one of the common causes of low back pain. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) activator drugs have been shown to reduce pain in several animal models. The present study examines if early treatment with the drug metformin, an indirect AMPK activator, and/or O304, a new direct AMPK activator, can reduce the mechanical hypersensitivity that develops after lumbar disc puncture in mice.

Learn More >

Differential modulation of ventral tegmental area circuits by the nociceptin/orphanin FQ system.

Learn More >

Increased expression of fibronectin leucine-rich transmembrane protein 3 in the dorsal root ganglion induces neuropathic pain in rats.

Neuropathic pain is a chronic condition that occurs frequently after nerve injury and induces hypersensitivity or allodynia characterized by aberrant neuronal excitability in the spinal cord dorsal horn. Fibronectin leucine-rich transmembrane protein 3 (FLRT3) is a modulator of neurite outgrowth, axon pathfinding, and cell adhesion, which is upregulated in the dorsal horn following peripheral nerve injury. However, the function of FLRT3 in adults remains unknown. Therefore, we aimed to investigate the involvement of spinal FLRT3 in neuropathic pain using rodent models. In the dorsal horns of male rats, FLRT3 protein levels increased at day 4 after peripheral nerve injury. In the dorsal root ganglion (DRG), FLRT3 was expressed in activating transcription factor 3-positive, injured sensory neurons. Peripheral nerve injury stimulated transcription in the DRG, but not in the spinal cord. Intrathecal administration of FLRT3 protein to naïve rats induced mechanical allodynia and GluN2B phosphorylation in the spinal cord. DRG-specific FLRT3 overexpression using adeno-associated virus also produced mechanical allodynia. Conversely, a function-blocking FLRT3 antibody attenuated mechanical allodynia after partial sciatic nerve ligation. Therefore, FLRT3 derived from injured DRG neurons increases dorsal horn excitability and induces mechanical allodynia.Neuropathic pain occurs frequently after nerve injury and is associated with abnormal neuronal excitability in the spinal cord. Fibronectin leucine-rich transmembrane protein 3 (FLRT3) regulates neurite outgrowth and cell adhesion. Here, nerve injury increased FLRT3 protein levels in the spinal cord dorsal root, despite the fact that transcripts were only induced in the dorsal root ganglion (DRG). FLRT3 protein injection into the rat spinal cord induced mechanical hypersensitivity, as did virus-mediated FLRT3 overexpression in DRG. Conversely, FLRT3 inhibition with antibodies attenuated mechanically induced pain after nerve damage. These findings suggest that FLRT3 is produced by injured DRG neurons and increases neuronal excitability in the dorsal horn, leading to pain sensitization. Neuropathic pain induction is a novel function of FLRT3.

Learn More >

Circular RNA expression profile in the spinal cord of morphine tolerated rats and screen of putative key circRNAs.

Morphine tolerance developed after repeated or continuous morphine treatment is a global health concern hindering the control of chronic pain. In our previous research, we have reported that the expression of lncRNAs and microRNAs have been greatly modified in the spinal cord of morphine tolerated rats, and the modulating role of miR-873a-5p, miR-219-5p and miR-365 have already been confirmed. However, whether circular RNAs, another essential kind of non-coding RNA, are involved in the pathogenesis of morphine tolerance is still beyond our knowledge. In this study, we conducted microarray analysis for circRNA profile and found a large number of circRNAs changed greatly in the spinal cord by morphine treatment. Among them, we selected nine circRNAs for validation, and seven circRNAs are confirmed. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) analysis were used for functional annotation. Besides, we confirmed the modified expression of seven circRNAs after validation by real-time PCR, selected 3 most prominently modulated ones among them and predicted their downstream miRNA-mRNA network and analyzed their putative function via circRNA-miRNA-mRNA pathway. Finally, we enrolled the differentially expressed mRNAs derived from the identical spinal cord, these validated circRNAs and their putative miRNA targets for ceRNA analysis and screened a promising circRNA-miRNA-mRNA pathway in the development of morphine tolerance. This study, for the first time, provided valuable information on circRNA profile and gave clues for further study on the circRNA mechanism of morphine tolerance.

Learn More >

Exercise and angiotensin receptor blockade enhance recovery after orthopaedic trauma in mice by decreasing pain and improving muscle regeneration.

Learn More >

Maladaptive activation of Nav1.9 channels by nitric oxide causes triptan-induced medication overuse headache.

Medication-overuse headaches (MOH) occur with both over-the-counter and pain-relief medicines, including paracetamol, opioids and combination analgesics. The mechanisms that lead to MOH are still uncertain. Here, we show that abnormal activation of Nav1.9 channels by Nitric Oxide (NO) is responsible for MOH induced by triptan migraine medicine. Deletion of the Scn11a gene in MOH mice abrogates NO-mediated symptoms, including cephalic and extracephalic allodynia, photophobia and phonophobia. NO strongly activates Nav1.9 in dural afferent neurons from MOH but not normal mice. Abnormal activation of Nav1.9 triggers CGRP secretion, causing artery dilatation and degranulation of mast cells. In turn, released mast cell mediators potentiates Nav1.9 in meningeal nociceptors, exacerbating inflammation and pain signal. Analysis of signaling networks indicates that PKA is downregulated in trigeminal neurons from MOH mice, relieving its inhibitory action on NO-Nav1.9 coupling. Thus, anomalous activation of Nav1.9 channels by NO, as a result of chronic medication, promotes MOH.

Learn More >

Peripheral Nerve Injury Triggers Neuroinflammation in the Medial Prefrontal Cortex and Ventral Hippocampus in a Subgroup of Rats with Coincident Affective Behavioural Changes.

Nerve damage leads to the development of disabling neuropathic pain in susceptible individuals, where patients present with pain as well as co-morbid affective behavioural disturbances, such as anhedonia, decreased motivation and depression. In this study we aimed to characterise changes in neuroinflammation in the medial prefrontal cortex (mPFC) and hippocampus (HP) in a rat model of neuropathic pain (NP) and behavioural changes. 53 rats underwent sciatic nerve chronic constriction injury (CCI) and were characterised as either, No effect, Acute effect or Lasting effect on the basis of changes in exploration behaviour in a radial-arm maze. Microglial and astrocyte morphology, as well as IL-1β, IL-6, IL-10, MCP-1, p38 MAPK and BDNF expression were quantified throughout the mPFC and HP using protein multiplex assays and immunofluorescence. All behavioural groups of CCI rats displayed equal levels of mechanical allodynia, however the characteristic withdrawal from pellet-seeking observed in Lasting effect rats was accompanied by neuroimmune activation within the contralateral ventral HP and mPFC. This includes increased expression of IL-1β, IL-6 and MCP-1, increased phospho-p38 MAPK expression in neurons and microglia, and a shift to a reactive microglial morphology in the caudal PL and IL, ventral CA1 and DG. Therefore, neuroinflammation in the mPFC and ventral HP may influence individual differences in radial-arm maze behaviour following CCI. Our data provide further evidence that individual differences in neuroimmune activation in the interconnected ventral HP-mPFC circuitry may play a role in the divergent behavioural trajectories following nerve injury, with neuroinflammation being coincident with affective behavioural changes in susceptible individuals.

Learn More >

Search