I am a
Home I AM A Search Login

Animal Studies

Share this

Inhibition of COX-2 alleviates lumbar spinal stenosis-induced chronic mechanical allodynia in rats.

Chronic low back pain due to lumbar spinal stenosis (LSS) is common, costly, mechanistically complex, and clinically challenging. However, the factors and mechanisms causing and mediating chronic pain induced by cauda equina compression remain unclear. Here, we examined the role of cyclooxygenase (COX)-2 in infiltrated macrophages, a key mediator of inflammation, in chronic neuropathic pain by LSS using an animal model. LSS was induced in adult male rats by cauda equina compression procedure using a silicone block within the epidural spaces of L5-L6 vertebrae. Locomotor deficit was observed after compression and mechanical allodynia was developed progressively for 4 weeks after injury. A number of macrophage were also infiltrated into the spinal parenchyma and cauda equina and COX-2 was expressed in infiltrated macrophages at 28 days after cauda equina compression. The administration of COX-2 inhibitors, celecoxib and MPO-0029, significantly alleviated LSS-induced chronic mechanical allodynia and inhibited the mRNA expression of inflammatory mediators such as tnf-α, Il-1β, il-6, and inos. Furthermore, COX-2 inhibitors significantly reduced prostaglandin E2 production. These results demonstrated the role of COX-2 in LSS-induced chronic neuropathic pain and suggest that the regulation of COX-2 can be considered as a therapeutic target to relive neuropathic pain.

Learn More >

Fn14 Participates in Neuropathic Pain Through NF-κB Pathway in Primary Sensory Neurons.

Fibroblast growth factor-inducible-14 (Fn14), a receptor for tumor necrosis-like weak inducer of apoptosis, is expressed in the neurons of dorsal root ganglion (DRG). Its mRNA is increased in the injured DRG following peripheral nerve injury. Whether this increase contributes to neuropathic pain is unknown. We reported here that peripheral nerve injury caused by spinal nerve ligation (SNL) increased the expression of Fn14 at both protein and mRNA levels in the injured DRG. Blocking this increase attenuated the development of SNL-induced mechanical, thermal, and cold pain hypersensitivities. Conversely, mimicking this increase produced the increases in the levels of phosphorylated extracellular signal-regulated kinase ½ and glial fibrillary acidic protein in ipsilateral dorsal horn and the enhanced responses to mechanical, thermal, and cold stimuli in the absence of SNL. Mechanistically, the increased Fn14 activated the NF-κB pathway through promoting the translocation of p65 into the nucleus of the injured DRG neurons. Our findings suggest that Fn14 may be a potential target for the therapeutic treatment of peripheral neuropathic pain.

Learn More >

Sigma-1 receptor modulates neuroinflammation associated with mechanical hypersensitivity and opioid tolerance in a mouse model of osteoarthritis pain.

Osteoarthritis pain is a chronic disabling condition lacking effective treatment. Continuous use of opioid drugs during osteoarthritis pain induces tolerance and may result in dose escalation and abuse. Sigma-1 receptor (σ1R), a chaperone expressed in key areas for pain control, modulates mu-opioid receptor (MOR) activity and represents a promising target to tackle these problems. The present study investigates the efficacy of σ1R antagonist E-52862 to inhibit pain sensitization, morphine tolerance and associated electrophysiological and molecular changes in a murine model of osteoarthritis pain.

Learn More >

A Missense Point Mutation in Nerve Growth Factor (NGFR100W) Results in Selective Peripheral Sensory Neuropathy.

Learn More >

Cheek Injection Model for Simultaneous Measurement of Pain and Itch-related Behaviors.

Itch was defined as "an unpleasant cutaneous sensation that provokes a desire to scratch" by Rothman in 1941. In mouse models, scratch bouts are typically counted to evaluate itch induced by pruritogens. However, previous reports have shown that algesic substances also induce scratching behaviors in a mouse neck injection model, which is the most common test used for scratching behaviors. This finding makes it difficult to study itch in mice.  In contrast, capsaicin, a common algogen, reduced scratching behaviors in some neck injection experiments. Therefore, the effect of pain on scratching behaviors remains unclear. It is thus necessary to develop a method to concurrently investigate itch and pain sensation using behavioral tests. Here, a cheek injection model is introduced which can be used to simultaneously measure pain- and itch-related behaviors. In this model, pruritogens induce scratching behaviors while algesic substances induce wiping behaviors. Using this model, lysophosphatidic acid (LPA), an itch mediator found in cholestatic patients with itch, is shown to exclusively induce itch but not pain. However, in mouse models, LPA has been reported to be both a pruritogen and an algogen. Investigation into the effects of LPA in a mouse cheek injection model showed that LPA only induced scratching, but not wiping behaviors. This indicates that LPA acts as a pruritogen similarly in mice and humans, and demonstrates the utility of a cheek injection model for itch research.

Learn More >

Discovery of Benzamidine- and 1-Aminoisoquinoline-Based Human MAS-Related G-Protein-Coupled Receptor X1 (MRGPRX1) Agonists.

Mas-related G-protein-coupled receptor X1 (MRGPRX1) is a human sensory neuron-specific receptor and has been actively investigated as a therapeutic target for the treatment of pain. By use of two HTS screening hit compounds, 4-(4-(benzyloxy)-3-methoxybenzylamino)benzimidamide () and 4-(2-(butylsulfonamido)-4-methylphenoxy)benzimidamide (), as molecular templates, a series of human MRGPRX1 agonists were synthesized and evaluated for their agonist activity using HEK293 cells stably transfected with human MrgprX1. Conversion of the benzamidine moiety into a 1-aminoisoquinoline moiety carried out in the later stage of structural optimization led to the discovery of a highly potent MRGPRX1 agonist, -(2-(1-aminoisoquinolin-6-yloxy)-4-methylphenyl)-2-methoxybenzenesulfonamide (), not only devoid of positively charged amidinium group but also with superior selectivity over opioid receptors. In mice, compound displayed favorable distribution to the spinal cord, the presumed site of action for the MRGPRX1-mediated analgesic effects.

Learn More >

Activation of a nerve injury transcriptional signature in airway-innervating sensory neurons after LPS induced lung inflammation.

Learn More >

Identification of a Spinal Circuit for Mechanical and Persistent Spontaneous Itch.

Lightly stroking the lips or gently poking some skin regions can evoke mechanical itch in healthy human subjects. Sensitization of mechanical itch and persistent spontaneous itch are intractable symptoms in chronic itch patients. However, the underlying neural circuits are not well defined. We identified a subpopulation of excitatory interneurons expressing Urocortin 3::Cre (Ucn3) in the dorsal spinal cord as a central node in the pathway that transmits acute mechanical itch and mechanical itch sensitization as well as persistent spontaneous itch under chronic itch conditions. This population receives peripheral inputs from Toll-like receptor 5-positive (TLR5) Aβ low-threshold mechanoreceptors and is directly innervated by inhibitory interneurons expressing neuropeptide Y::Cre (NPY) in the dorsal spinal cord. Reduced synaptic inhibition and increased intrinsic excitability of Ucn3 neurons lead to chronic itch sensitization. Our study sheds new light on the neural basis of chronic itch and unveils novel avenues for developing mechanism-specific therapeutic advancements.

Learn More >

Cell type-specific modulation of sensory and affective components of itch in the periaqueductal gray.

Itch is a distinct aversive sensation that elicits a strong urge to scratch. Despite recent advances in our understanding of the peripheral basis of itch, we know very little regarding how central neural circuits modulate acute and chronic itch processing. Here we establish the causal contributions of defined periaqueductal gray (PAG) neuronal populations in itch modulation in mice. Chemogenetic manipulations demonstrate bidirectional modulation of scratching by neurons in the PAG. Fiber photometry studies show that activity of GABAergic and glutamatergic neurons in the PAG is modulated in an opposing manner during chloroquine-evoked scratching. Furthermore, activation of PAG GABAergic neurons or inhibition of glutamatergic neurons resulted in attenuation of scratching in both acute and chronic pruritis. Surprisingly, PAG GABAergic neurons, but not glutamatergic neurons, may encode the aversive component of itch. Thus, the PAG represents a neuromodulatory hub that regulates both the sensory and affective aspects of acute and chronic itch.

Learn More >

Brain-derived neurotrophic factor stimulation of T-type Ca channels in sensory neurons contributes to increased peripheral pain sensitivity.

Although brain-derived neurotrophic factor (BDNF) is implicated in the nociceptive signaling of peripheral sensory neurons, the underlying mechanisms remain largely unknown. Here, we elucidated the effects of BDNF on the neuronal excitability of trigeminal ganglion (TG) neurons and the pain sensitivity of rats mediated by T-type Ca channels. BDNF reversibly and dose-dependently enhanced T-type channel currents through the activation of tropomyosin receptor kinase B (TrkB). Antagonism of phosphatidylinositol 3-kinase (PI3K) but not of its downstream target, the kinase AKT, abolished the BDNF-induced T-type channel response. BDNF application activated p38 mitogen-activated protein kinase (MAPK), and this effect was prevented by inhibition of PI3K but not of protein kinase A (PKA). Antagonism of either PI3K or p38 MAPK prevented the BDNF-induced stimulation of PKA activity, whereas PKA inhibition blocked the BDNF-mediated increase in T-type currents. BDNF increased the rate of action potential firing in TG neurons and enhanced the pain sensitivity of rats to mechanical stimuli. Moreover, inhibition of TrkB signaling abolished the increased mechanical sensitivity in a rat model of chronic inflammatory pain, and this effect was attenuated by either T-type channel blockade or knockdown of the channel Ca3.2. Together, our findings indicate that BDNF enhances T-type currents through the stimulation of TrkB coupled to PI3K-p38-PKA signaling, thereby inducing neuronal hyperexcitability of TG neurons and pain hypersensitivity in rats.

Learn More >

Search