I am a
Home I AM A Search Login

Animal Studies

Share this

Preclinical testing of nalfurafine as an opioid-sparing adjuvant that potentiates analgesia by the mu opioid receptor-targeting agonist morphine.

Mu opioid receptor (MOR)-targeting analgesics are efficacious pain treatments, but notorious for their abuse potential. In preclinical animal models, co administration of traditional kappa opioid receptor (KOR)-targeting agonists with MOR-targeting analgesics can decrease reward and potentiate analgesia. However, traditional KOR-targeting agonists are well known for inducing anti-therapeutic side effects (psychotomimesis, depression, anxiety, dysphoria). Recent data suggest that some functionally selective, or biased, KOR-targeting agonists might retain the therapeutic effects of KOR activation without inducing undesirable side effects. Nalfurafine, used safely in Japan since 2009 for uremic pruritus, is one such functionally selective KOR-targeting agonist. Here, we quantify the bias of nalfurafine and several other KOR agonists relative to an unbiased reference standard (U50,488), and show that nalfurafine and EOM-salvinorin-B demonstrate marked G protein-signaling bias. While nalfurafine (0.015 mg/kg) and EOM-salvinorin-B (1 mg/kg) produced spinal anti-nociception equivalent to 5 mg/kg U50,488, only nalfurafine significantly enhanced the supraspinal analgesic effect of 5 mg/kg morphine. In addition, 0.015 mg/kg nalfurafine did not produce significant conditioned place aversion (CPA), yet retained the ability to reduce morphine-induced conditioned place preference (CPP) in C57BL/6J mice. Nalfurafine and EOM-salvinorin-B each produced robust inhibition of both spontaneous and morphine-stimulated locomotor behavior, suggesting a persistence of sedative effects when co-administered with morphine. Taken together, these findings suggest that nalfurafine produces analgesic augmentation, while also reducing opioid-induced reward with less risk of dysphoria. Thus, adjuvant administration of G protein-biased KOR agonists like nalfurafine may be beneficial in enhancing the therapeutic potential of MOR-targeting analgesics, such as morphine. SIGNIFICANCE STATEMENT: N/A.

Learn More >

SIRT1 Activation Attenuates Bone Cancer Pain by Inhibiting mGluR1/5.

Bone cancer pain (BCP), which is induced by primary or metastatic bone cancer, remains a clinically challenging problem due to the poor understanding of its mechanisms. Sirtuin 1 (SIRT1) plays an important role in various pain models. Intrathecal administration of SRT1720, a SIRT1 activator, attenuates BCP in a rat model. However, the expression and activity of SIRT1 during the development and maintenance of BCP remain unknown. Furthermore, the underlying mechanism of SIRT1 in BCP remains ambiguous. In this study, we detected the time course of SIRT1 expression and activity in the spinal cord of mice with BCP and examined whether SRT1720 alleviated BCP by inhibiting metabotropic glutamatergic receptor (mGluR) 1/5 expression. In addition, we downregulated spinal SIRT1 expression in normal mice through an intrathecal injection of AAV-SIRT1-shRNA and then assessed pain behavior and mGluR1/5 expression. Mice with BCP developed significant mechanical allodynia and spontaneous flinching, accompanied by decreased levels of the SIRT1 protein, mRNA, and activity in the spinal cord. The SRT1720 treatment produced an analgesic effect on tumor-bearing mice and decreased the spinal levels of the mGluR1/5 protein and mRNA. In contrast, the AAV-SIRT1-shRNA treatment induced pain behavior in normal mice and increased the spinal levels of the mGluR1/5 protein and mRNA. The results suggested a critical role for SIRT1 in the development and maintenance of BCP and further indicated that activation of SIRT1 in the spinal cord by SRT1720 functionally reverses BCP in mice by inhibiting mGluR1/5.

Learn More >

Epigenomic signatures underpin the axonal regenerative ability of dorsal root ganglia sensory neurons.

Axonal injury results in regenerative success or failure, depending on whether the axon lies in the peripheral or the CNS, respectively. The present study addresses whether epigenetic signatures in dorsal root ganglia discriminate between regenerative and non-regenerative axonal injury. Chromatin immunoprecipitation for the histone 3 (H3) post-translational modifications H3K9ac, H3K27ac and H3K27me3; an assay for transposase-accessible chromatin; and RNA sequencing were performed in dorsal root ganglia after sciatic nerve or dorsal column axotomy. Distinct histone acetylation and chromatin accessibility signatures correlated with gene expression after peripheral, but not central, axonal injury. DNA-footprinting analyses revealed new transcriptional regulators associated with regenerative ability. Machine-learning algorithms inferred the direction of most of the gene expression changes. Neuronal conditional deletion of the chromatin remodeler CCCTC-binding factor impaired nerve regeneration, implicating chromatin organization in the regenerative competence. Altogether, the present study offers the first epigenomic map providing insight into the transcriptional response to injury and the differential regenerative ability of sensory neurons.

Learn More >

Lovastatin inhibits Toll-like receptor 4 signaling in microglia by targeting its co-receptor myeloid differentiation protein 2 and attenuates neuropathic pain.

There is growing interest in drug repositioning to find new therapeutic indications for drugs already approved for use in people. Lovastatin is an FDA approved drug that has been used clinically for over a decade as a lipid-lowering medication. While lovastatin is classically considered to act as a hydroxymethylglutaryl (HMG)-CoA reductase inhibitor, the present series of studies reveal a novel lovastatin effect, that being as a Toll-like receptor 4 (TLR4) antagonist. Lovastatin selectively inhibits lipopolysaccharide (LPS)-induced TLR4-NF-κB activation without affecting signaling by other homologous TLRs. In vitro biophysical binding and cellular thermal shift assay (CETSA) show that lovastatin is recognized by TLR4's coreceptor myeloid differentiation protein 2 (MD-2). This finding is supported by molecular dynamics simulations that lovastatin targets the LPS binding pocket of MD-2 and lovastatin binding stabilizes the MD-2 conformation. In vitro studies of BV-2 microglial cells revealed that lovastatin inhibits multiple effects of LPS, including activation of NFkB; mRNA expression of tumor necrosis factor-a, interleukin-6 and cyclo-oxygenase 2; production of nitric oxide and reactive oxygen species; as well as phagocytic activity. Furthermore, intrathecal delivery of lovastatin over lumbosacral spinal cord of rats attenuated both neuropathic pain from sciatic nerve injury and expression of the microglial activation marker CD11 in lumbar spinal cord dorsal horn. Given the well-established role of microglia and proinflammatory signaling in neuropathic pain, these data are supportive that lovastatin, as a TLR4 antagonist, may be productively repurposed for treating chronic pain.

Learn More >

Itch-associated Neuropeptides and Their Receptor Expression in Dog Dorsal Root Ganglia and Spinal Cord.

Most canine visits to veterinarians are related to skin diseases with itch being the chief complaint. Historically, several itch-inducing molecules and pathways have been identified in mice, but whether or not these are similar in dogs is not yet known. Herein, we set out to study the expression of pruritogenic neuropeptides, their cognate receptors with a limited functional validation thereof using a multidisciplinary approach. We demonstrated the expression of somatostatin and other major neuropeptides and receptors in canine dorsal root ganglia neurons. Next, we showed that interleukin-31, serotonin, and histamine activate such neurons. Furthermore, we demonstrated the physiological release of somatostatin from dog dorsal root ganglia neurons in response to several endogenous itch mediators. In summary, our results provide the first evidence that dogs use similar pruritogenic pathways to those characterized in mice and we thus identify multiple targets for the future treatment of itch in dogs.

Learn More >

Sham surgeries for central and peripheral neural injuries persistently enhance pain-avoidance behavior as revealed by an operant conflict test.

Studies using rodent models of neuropathic pain employ sham surgery control procedures that cause deep tissue damage. Sham surgeries would thus be expected to induce potentially long-lasting postsurgical pain, but little evidence for such pain has been reported. Operant tests of voluntary behavior can reveal negative motivational and cognitive aspects of pain that may provide sensitive tools for detecting pain-related alterations. In a previously described operant mechanical conflict (MC) test involving lengthy familiarization and training, rodents freely choose to either escape from a brightly lit chamber by crossing sharp probes or refuse to cross. Here, we describe a brief (2-day) MC protocol that exploits rats' innate exploratory response to a novel environment in order to detect persistently enhanced pain-avoidance behavior after sham surgeries for two neural injury models: thoracic spinal cord injury (SCI) and chronic constriction injury (CCI) of the sciatic nerve. Pitting the combined motivations to avoid the bright light and to explore the novel device against pain from crossing noxious probes disclosed a conflicting, hyperalgesia-related reluctance to repeatedly cross the probes after injury. Rats receiving standard sham surgeries demonstrated enhanced pain-like avoidance behavior compared to naive controls, and this behavior was similar to that of corresponding CCI or SCI rats weeks or months after injury. In the case of sham surgery for SCI, video analysis of voluntary exploratory behavior directed at the probes revealed enhanced forepaw withdrawal responses. These findings have important implications for preclinical investigations into behavioral alterations and physiological mechanisms associated with postsurgical and neuropathic pain.

Learn More >

Losartan, an Angiotensin II Type 1 Receptor Antagonist, Alleviates Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain by Inhibiting Inflammatory Cytokines in the Dorsal Root Ganglia.

Chemotherapy-induced peripheral neuropathy (CIPN) adversely impacts quality of life and a challenge to treat with existing drugs used for neuropathic pain. Losartan, an angiotensin II type 1 receptor (AT1R) antagonist widely used to treat hypertension, has been reported to have analgesic effects in several pain models. In this study, we assessed losartan's analgesic effect on paclitaxel-induced neuropathic pain (PINP) in rats and its mechanism of action in dorsal root ganglion (DRG). Rats received intraperitoneal injections of 2 mg/kg paclitaxel on days 0, 2, 4, and 6 and received single or multiple intraperitoneal injections of losartan potassium dissolved in phosphate-buffered saline at various times. The mechanical thresholds, protein levels of inflammatory cytokines, and cellular location of AT1R and interleukin 1β (IL-1β) in the DRG were assessed with behavioral testing, Western blotting, and immunohistochemistry, respectively. Data were analyzed by two-way repeated-measures analysis of variance for the behavioral test or the Mann-Whitney U test for the Western blot analysis and immunohistochemistry. Single and multiple injections of losartan ameliorated PINP, and losartan delayed the development of PINP. Paclitaxel significantly increased, and losartan subsequently decreased, the expression levels of inflammatory cytokines, including IL-1β and tumor necrosis factor α (TNF-α), in the lumbar DRG. AT1R and IL-1β were expressed in both neurons and satellite cells and losartan decreased the intensity of IL-1β in the DRG. Losartan ameliorates PINP by decreasing inflammatory cytokines including IL-1β and TNF-α in the DRG. Our findings provide a new or add-on therapy for CIPN patients.

Learn More >

A New Rat Model of Thalamic Pain Produced by Administration of Cobra Venom to the Unilateral Ventral Posterolateral Nucleus.

Thalamic pain is a neuropathic pain syndrome that occurs as a result of thalamic damage. It is difficult to develop therapeutic interventions for thalamic pain because its mechanism is unclear. To better understand the pathophysiological basis of thalamic pain, we developed and characterized a new rat model of thalamic pain using a technique of microinjecting cobra venom into the ventral posterolateral nucleus (VPL) of the thalamus.

Learn More >

Behavioral pharmacology of novel kappa opioid receptor antagonists in rats.

New treatments for stress-related disorders including depression, anxiety and Substance Use Disorder are greatly needed. Kappa opioid receptors (KORs) are expressed in central nervous system, including areas implicated in analgesia and affective state. Although KOR agonists share the antinociceptive effects of mu opioid receptor (MOR) agonists, they also tend to produce negative affective states. In contrast, selective KOR antagonists have antidepressant- and anxiolytic-like effects, stimulating interest in their therapeutic potential. The prototypical KOR antagonists (e.g., norBNI, JDTic) have an exceptionally long duration of action that complicates their use in humans, particular in tests to establish safety. This study was designed to test dose- and time-course effects of novel KOR antagonists with the goal of identifying short-acting lead compounds for future medication development.

Learn More >

Repeated neonatal needle-prick stimulation increases inflammatory mechanical hypersensitivity in adult rats.

Newborn infants are vulnerable to procedural stress and pain exposure on the first weeks of life that represents a critical period for the development of nociceptive, sensory, emotional, and social functions. We evaluated the nociceptive behavior of adult male and female rats that were submitted to nociceptive experience in the neonatal period and the maternal behavior in the postnatal period.

Learn More >

Search