I am a
Home I AM A Search Login

Animal Studies

Share this

Pain inhibition through transplantation of fetal neuronal progenitors into the injured spinal cord in rats.

Neuropathic pain after spinal cord injury (SCI) is a complex condition that responds poorly to usual treatments. Cell transplantation represents a promising therapy; nevertheless, the ideal cell type in terms of neurogenic potential and effectiveness against pain remains largely controversial. Here, we evaluated the ability of fetal neural stem cells (fNSC) to relieve chronic pain and, secondarily, their effects on motor recovery. Adult Wistar rats with traumatic SCI were treated, 10 days after injury, with intra-spinal injections of culture medium (sham) or fNSCs extracted from telencephalic vesicles (TV group) or the ventral medulla (VM group) of E/14 embryos. Sensory (von Frey filaments and hot plate) and motor (the Basso, Beattie, Bresnahan locomotor rating scale and inclined plane test) assessments were performed during 8 weeks. Thereafter, spinal cords were processed for immunofluorescence and transplanted cells were quantified by stereology. The results showed improvement of thermal hyperalgesia in the TV and VM groups at 4 and 5 weeks after transplantation, respectively. Moreover, mechanical allodynia improved in both the TV and VM groups at 8 weeks. No significant motor recovery was observed in the TV or VM groups compared with sham. Stereological analyses showed that ~70% of TV and VM cells differentiated into NeuN neurons, with a high proportion of enkephalinergic and GABAergic cells in the TV group and enkephalinergic and serotoninergic cells in the VM group. Our study suggests that neuronal precursors from TV and VM, once implanted into the injured spinal cord, maturate into different neuronal subtypes, mainly GABAergic, serotoninergic, and enkephalinergic, and all subtypes alleviate pain, despite no significant motor recovery. The study was approved by the Animal Ethics Committee of the Medical School of the University of São Paulo (protocol number 033/14) on March 4, 2016.

Learn More >

Structural basis of temperature sensation by the TRP channel TRPV3.

We present structures of mouse TRPV3 in temperature-dependent open, closed and intermediate states that suggest two-step activation of TRPV3 by heat. During the strongly temperature-dependent first step, sensitization, the channel pore remains closed while S6 helices undergo α-to-π transitions. During the weakly temperature-dependent second step, channel opening, tight association of the S1-S4 and pore domains is stabilized by changes in the carboxy-terminal and linker domains.

Learn More >

The rostromedial tegmental nucleus: a key modulator of pain and opioid analgesia.

A recently defined structure, the rostromedial tegmental nucleus (RMTg; aka tail of the ventral tegmental area), has been proposed as an inhibitory control center for dopaminergic activity of the ventral tegmental area (VTA). This region is composed of GABAergic cells which send afferent projections to the ventral midbrain and synapse onto dopaminergic cells in the VTA and substantia nigra. These cells exhibit µ-opioid receptor immunoreactivity, and in-vivo, ex-vivo, and optogenetic/electrophysiological approaches demonstrate that morphine excites dopamine neurons by targeting receptors on GABAergic neurons localized in the RMTg. This suggests that the RMTg may be a key modulator of opioid effects, and a major brake regulating VTA dopamine systems. However, no study has directly manipulated RMTg GABAergic neurons in-vivo and assessed the effect on nociception or opioid analgesia. In this study, multiplexing of GABAergic neurons in the RMTg was achieved using stimulatory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) and inhibitory kappa-opioid receptor DREADDs (KORD). Our data show that locally-infused RMTg morphine or selective RMTg GABAergic neuron inhibition produces 87% of the maximal antinociceptive effect of systemic morphine, and RMTg GABAergic neurons modulate dopamine release in the nucleus accumbens. Additionally, chemo-activation of VTA dopamine neurons significantly reduced pain behaviors both in resting and facilitated-pain states and reduced by 75% the dose of systemic morphine required to produce maximal antinociception. These results provide compelling evidence that RMTg GABAergic neurons are involved in processing of nociceptive information and are important mediators of opioid analgesia.

Learn More >

The IL-6/p-BTK/p-ERK signaling mediates the calcium phosphate-induced pruritus.

Uremic pruritus with elevated levels of calcium phosphate (CaP) in skin is a common symptom in patients with chronic kidney disease (CKD). In this study, we demonstrate that intradermal injection of CaP into mice-triggered scratching by up-regulating the IL-6 in skin and phosphorylation of ERKs in dorsal root ganglion (DRG) in a dose-dependent manner. IL-6 is essential because the CaP-induced up-regulation of phosphorylated (p)-ERK in DRG was considerably reduced in the IL-6 knockout mice. Microarray analysis in conjunction with real-time PCR revealed a higher mRNA expression of Bruton's tyrosine kinase (BTK) gene in DRG after CaP injection. The inhibition of BTK by ibrutinib noticeably diminish the CaP-induced up-regulation of IL-6 and p-ERK in mice. A high amount of IL-6 was detected in itchy skin and blood of patients with CKD. The expressions of p-BTK and p-ERK in DRG primary cells reached maximum levels at 1 and 10 min, respectively, after treatment of recombinant IL-6 and were significantly reduced by treatment of IL-6 along with ibrutinib. The mechanism by which the CaP-induced pruritus mediated by the IL-6/p-BTK/p-ERK signaling was revealed.-Keshari, S., Sipayung, A. D., Hsieh, C.-C., Su, L.-J., Chiang, Y.-R., Chang, H.-C., Yang, W.-C., Chuang, T.-H., Chen, C.-L., Huang, C.-M. The IL-6/p-BTK/p-ERK signaling mediates the calcium phosphate-induced pruritus.

Learn More >

Assessment of nociception and related quality of life measures in a porcine model of Neurofibromatosis type 1.

Neurofibromatosis Type 1 (NF1) is an autosomal dominant genetic disorder resulting from germline mutations in the NF1 gene, which encodes neurofibromin. Patients experience a variety of symptoms, but pain in the context of NF1 remains largely under-recognized. Here, we characterize nociceptive signaling and pain behaviors in a miniswine harboring a disruptive NF1 mutation (exon 42 deletion). We present the first characterization of pain-related behaviors in a pig model of NF1, identifying unchanged agitation scores, lower tactile thresholds (allodynia), and decreased response latencies to thermal laser stimulation (hyperalgesia) in NF1 (females only) pigs. Male NF1 pigs with tumors showed reduced sleep quality and increased resting, two health-related quality of life symptoms found to be comorbid in people with NF1 pain. We explore these phenotypes in relationship to suppression of the increased activity of the N-type voltage-gated calcium (CaV2.2) channel by pharmacological antagonism of phosphorylation of a regulatory protein – the collapsin response mediator protein 2 (CRMP2), a known interactor of neurofibromin, and by targeting the interface between the α subunit of CaV2.2 and the accessory β-subunits with small molecules. Our data supports the use of NF1 pigs as a large animal model for studying NF1-associated pain and for understanding the pathophysiology of NF1. Our findings demonstrate the translational potential of two small molecules in reversing ion channel remodeling seen in NF1. Interfering with CaV2.2, a clinically validated target for pain management, might also be a promising therapeutic strategy for NF1-related pain management.

Learn More >

Oxycodone, fentanyl, and morphine amplify established neuropathic pain in male rats.

Opioids are widely prescribed for chronic pain, including neuropathic pain despite growing evidence of long-term harm. Previous preclinical studies have documented exacerbation of nociceptive hypersensitivity, including that induced by peripheral nerve injury, by morphine. The present series of behavioral studies sought to replicate and extend our prior research, which demonstrated a multi-month exacerbation of nociceptive hypersensitivity by a 5-day course of morphine initiated 10 days after nerve injury. The current studies demonstrate that enduring exacerbation of nociceptive hypersensitivity is not restricted to morphine, but rather is also created by the clinically relevant opioids fentanyl and oxycodone when these are likewise-administered for 5 days beginning 10 days after nerve injury. Furthermore, enduring exacerbation of nociceptive hypersensitivity is also observed when the same dosing regimen for either morphine, fentanyl, or oxycodone begins 1 month after nerve injury. Lastly, a striking result from these studies is that no such exacerbation of nociceptive hypersensitivity occurs when either morphine, fentanyl, or oxycodone dosing begins at the time of nerve injury. These results extend our previous findings that morphine exacerbates nociceptive hypersensitivity to the clinically relevant opioids fentanyl and oxycodone when administered after the development of nociceptive hypersensitivity, while also providing possible clinically-relevant insight into when these opioids can be safely administered and not exacerbate neuropathic pain.

Learn More >

Linaclotide treatment reduces endometriosis-associated vaginal hyperalgesia and mechanical allodynia through viscero-visceral cross-talk.

Endometriosis, an estrogen-dependent chronic inflammatory disease, is the most common cause of chronic pelvic pain (CPP). Here we investigated the effects of linaclotide, an FDA approved treatment for IBS-C, in a rat model of endometriosis. Eight weeks after endometrium transplantation into the intestinal mesentery, rats developed endometrial lesions as well as vaginal hyperalgesia to distension and decreased mechanical hindpaw withdrawal thresholds. Daily oral administration of linaclotide, a peripherally restricted guanylate cyclase-C (GC-C) agonist peptide acting locally within the gastrointestinal tract increased pain thresholds to vaginal distension and mechanical hindpaw withdrawal thresholds relative to vehicle treatment. Furthermore, using a cross-over design, administering linaclotide to rats previously administered vehicle resulted in increased hindpaw withdrawal thresholds, whilst replacing linaclotide with vehicle treatment decreased hindpaw withdrawal thresholds. Retrograde tracing of sensory afferent nerves from the ileum, colon and vagina revealed that central terminals of these afferents lie in close apposition to one another within the dorsal horn of the spinal cord. We also identified dichotomizing dual-labelled ileal/colon innervating afferents as well as colon/vaginal dual-labelled neurons and a rare population of triple traced ileal/colon/vaginal neurons within thoracolumbar DRG. These observations provide potential sources of cross-organ interaction at the level of the DRG and spinal cord. GC-C expression is absent in the vagina and endometrial cysts suggesting that the actions of linaclotide are via shared nerve pathways between these organs. In summary, linaclotide may offer a novel therapeutic option not only for treatment of chronic endometriosis-associated pain, but concurrent treatment of comorbid CPP syndromes.

Learn More >

The highly selective dopamine DR antagonist, RVK4-40, attenuates oxycodone reward and augments analgesia in rodents.

Prescription opioid abuse is a global crisis. New treatment strategies for pain and opioid use disorders are urgently required. We evaluated the effects of RVK4-40, a highly selective dopamine (DA) D receptor (DR) antagonist, on the rewarding and analgesic effects of oxycodone, the most commonly abused prescription opioid, in rats and mice. Systemic administration of RVK4-40 dose-dependently inhibited oxycodone self-administration and shifted oxycodone dose-response curves downward in rats. Pretreatment with RVK4-40 also dose-dependently lowered break-points for oxycodone under a progressive-ratio schedule. To determine whether a DA-dependent mechanism underlies the impact of D antagonism in reducing opioid reward, we used optogenetic approaches to examine intracranial self-stimulation (ICSS) maintained by optical activation of ventral tegmental area (VTA) DA neurons in DAT-Cre mice. Photoactivation of VTA DA in non-drug treated mice produced robust ICSS behavior. Lower doses of oxycodone enhanced, while higher doses inhibited, optical ICSS. Pretreatment with RVK4-40 blocked oxycodone-enhanced brain-stimulation reward. By itself, RVK4-40 produced a modest dose-dependent reduction in optical ICSS. Pretreatment with RVK4-40 did not compromise the antinociceptive effects of oxycodone in rats, and RVK4-40 alone produced mild antinociceptive effects without altering open-field locomotion or rotarod locomotor performance. Together, these findings suggest RVK4-40 may permit a lower dose of prescription opioids for pain management, potentially mitigating tolerance and dependence, while diminishing reward potency. Hence, development of RVK4-40 as a therapy for the treatment of opioid use disorders and/or pain is currently underway.

Learn More >

KIF2A characterization after spinal cord injury.

Axons in the central nervous system (CNS) typically fail to regenerate after injury. This failure is multi-factorial and caused in part by disruption of the axonal cytoskeleton. The cytoskeleton, in particular microtubules (MT), plays a critical role in axonal transport and axon growth during development. In this regard, members of the kinesin superfamily of proteins (KIFs) regulate the extension of primary axons toward their targets and control the growth of collateral branches. KIF2A negatively regulates axon growth through MT depolymerization. Using three different injury models to induce SCI in adult rats, we examined the temporal and cellular expression of KIF2A in the injured spinal cord. We observed a progressive increase of KIF2A expression with maximal levels at 10 days to 8 weeks post-injury as determined by Western blot analysis. KIF2A immunoreactivity was present in axons, spinal neurons and mature oligodendrocytes adjacent to the injury site. Results from the present study suggest that KIF2A at the injured axonal tips may contribute to neurite outgrowth inhibition after injury, and that its increased expression in inhibitory spinal neurons adjacent to the injury site might contribute to an intrinsic wiring-control mechanism associated with neuropathic pain. Further studies will determine whether KIF2A may be a potential target for the development of regeneration-promoting or pain-preventing therapies.

Learn More >

House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation.

Allergic skin diseases, such as atopic dermatitis, are clinically characterized by severe itching and type 2 immunity-associated hypersensitivity to widely distributed allergens, including those derived from house dust mites (HDMs). Here we found that HDMs with cysteine protease activity directly activated peptidergic nociceptors, which are neuropeptide-producing nociceptive sensory neurons that express the ion channel TRPV1 and Tac1, the gene encoding the precursor for the neuropeptide substance P. Intravital imaging and genetic approaches indicated that HDM-activated nociceptors drive the development of allergic skin inflammation by inducing the degranulation of mast cells contiguous to such nociceptors, through the release of substance P and the activation of the cationic molecule receptor MRGPRB2 on mast cells. These data indicate that, after exposure to HDM allergens, activation of TRPV1Tac1 nociceptor-MRGPRB2 mast cell sensory clusters represents a key early event in the development of allergic skin reactions.

Learn More >

Search