I am a
Home I AM A Search Login

Animal Studies

Share this

BMP-7 protects male and female rodents against neuropathic pain induced by nerve injury through a mechanism mediated by endogenous opioids.

Neuropathic pain is highly prevalent in pathological conditions such as diabetes, herpes zoster, trauma, etc. The severity and refractoriness to treatments make neuropathic pain a significant health concern. The transforming growth factor (TGF-β) family of cytokines is involved in pain modulation. Bone morphogenetic proteins (BMPs) constitute the largest subgroup within the TGF-β family. BMP-7 induces the transcription of genes coding endogenous opioid precursors in vitro. However, a nociception modulatory function for this cytokine remains unexplored in vivo. Herein, we show that BMP-7 and its type I receptors were detected in regions of the nervous system involved in pain transmission, processing, and modulation. BMP-7 haploinsufficiency confers to male and female mice a tactile hyperalgesia phenotype to mechanical stimuli, both at baseline and after sciatic nerve injury (SNI). The administration of recombinant BMP-7 (rBMP-7) reduced the severity of the allodynia after SNI in rodents without sexual dimorphism. Central administration of rBMP-7 delayed allodynia development after SNI and reduced the severity of allodynia. The opioid antagonist naloxone antagonized the antinociceptive effect of rBMP-7 in rats. The analgesic effect of morphine was significantly attenuated in BMP-7 mice. The antiallodynic effect of voluntary exercise after SNI, whose mechanism involves the endogenous opioid system, was hampered by BMP-7 deficiency while potentiated by rBMP-7. Our results suggest that BMP-7 may constitute a novel therapeutic target for the treatment of neuropathic pain, which improves the function of the endogenous pain-resolution mechanisms to alleviate chronic pain.

Learn More >

The Presence of High Levels of Circulating Trimethylamine N-Oxide Exacerbates Central and Peripheral Inflammation and Inflammatory Hyperalgesia in Rats Following Carrageenan Injection.

Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has recently been shown to promote inflammation in peripheral tissues and the central nervous system (CNS), contributing to the pathogenesis of various human diseases. Here, we examined whether the presence of high levels of circulating TMAO would influence central and peripheral inflammation and inflammatory hyperalgesia in a carrageenan (CG)-induced rat model of inflammation. Rats were treated with vehicle or TMAO in drinking water. After 2 weeks of treatment, rats received intraplantar injection of saline or CG into the hind paw. Acute nociception was unaltered in TMAO-treated rats that had elevated plasma TMAO. Following CG injection, TMAO-treated rats were significantly more sensitive to thermal and mechanical stimulation of the inflamed paw and displayed greater paw edema. Molecular studies revealed that CG injection induced increases in recruitment of neutrophils/macrophages in the paw and activation of microglia in the spinal cord, along with increased activation of nuclear factor (NF)-kB and production of proinflammatory mediators in both vehicle-treated rats and TMAO-treated rats. However, the increases in the above parameters were more pronounced in TMAO-treated rats. Moreover, TMAO treatment decreased protein levels of anti-inflammatory mediator regulator of G protein signaling (RGS)-10 in both saline-injected rats and CG-injected rats. These findings suggest that the presence of high levels of circulating TMAO downregulates anti-inflammatory mediator RGS10 in both peripheral tissues and the CNS, which may increase the susceptibility to inflammatory challenge-induced NF-kB activity, leading to greater increase in production of inflammatory mediators and consequent exacerbation of peripheral inflammation and inflammatory hyperalgesia.

Learn More >

Keratin defects trigger the itch-inducing cytokine thymic stromal lymphopoietin via Areg-Egfr signaling.

Loss of the keratin cytoskeleton results in upregulation of the pro-inflammatory cytokine Tslp via autocrine Areg-Egfr-Erk1/2 signaling. The Areg-Egfr axis represents a therapeutical target to moderate Tslp, inflammation and itch in EBS.

Learn More >

Fatty acid suppression of glial activation prevents central neuropathic pain after spinal cord injury.

About half of patients with spinal cord injury (SCI) develop debilitating central neuropathic pain (CNP), with no effective treatments. Thus, effective, safe, and novel therapies are needed urgently. Previously, docosahexaenoic acid (DHA) was reported to confer neuroprotection in preclinical SCI models. However, its therapeutic potential on SCI-CNP remains to be elucidated. Here, we demonstrated for the first time that intravenous DHA administrations with 3-day intervals (250 nmol/kg; starting 30 minutes after injury and maintained for 6 weeks) effectively prevented SCI-CNP development in a clinically relevant rat contusion model. SCI-CNP was assessed by a novel sensory profiling approach combining evoked pain measures and pain-related ethologically relevant rodent behaviours (burrowing, thigmotaxis, and place/escape avoidance) to mimic those for measuring human (sensory, affective, cognitive, and spontaneous) pain. Strikingly, already established SCI-CNP could be abolished partially by similar DHA administrations, starting from the beginning of week 4 after injury and maintained for 4 weeks. At spinal (epicenter and L5 dorsal horns) and supraspinal (anterior cingulate cortex) levels, both treatment regimens potently suppressed microglial and astrocyte activation, which underpins SCI-CNP pathogenesis. Spinal microgliosis, a known hallmark associated with neuropathic pain behaviours, was reduced by DHA treatments. Finally, we revealed novel potential roles of peroxisome proliferator-activated and retinoid X receptors and docosahexaenoyl ethanolamide (DHA's metabolite) in mediating DHA's effects on microglial activation. Our findings, coupled with the excellent long-term clinical safety of DHA even in surgical and critically ill patients, suggest that systemic DHA treatment is a translatable, effective, safe, and novel approach for preventing and managing SCI-CNP.

Learn More >

PACAP and other neuropeptides link chronic migraine and opioid-induced hyperalgesia in mouse models.

Chronic use of opioids can produce opioid-induced hyperalgesia (OIH), and when used to treat migraine, these drugs can result in increased pain and headache chronicity. We hypothesized that overlapping mechanisms between OIH and chronic migraine occur through neuropeptide dysregulation. Using label-free, non-biased liquid chromatography-mass spectrometry to identify and measure changes in more than 1500 neuropeptides under these two conditions, we observed only 16 neuropeptides that were altered between the two conditions. The known pro-migraine molecule, calcitonin-gene related peptide, was among seven peptides associated with chronic migraine, with several pain-processing neuropeptides among the nine other peptides affected in OIH. Furthermore, composite peptide complements Pituitary adenylate cyclase-activating polypeptide (PACAP), Vasoactive intestinal peptide (VIP) and Secretogranin (SCG) showed significant changes in both chronic migraine and OIH. In a follow-up pharmacological study, we confirmed the role of PACAP in models of these two disorders, validating the effectiveness of our peptidomic approach, and identifying PACAP as a mechanistic link between chronic migraine and OIH. Data are available via ProteomeXchange with identifier PXD013362.

Learn More >

Targeting CGRP via receptor antagonism and antibody neutralisation in two distinct rodent models of migraine-like pain.

Rodent disease models can play an indispensable role in drug development. Confirming that translationally-relevant disease mechanisms are engaged in such models is a crucial facet of this process. Accordingly, we have validated the role of calcitonin gene-related peptide signaling in a mouse model of glyceryl trinitrate-provoked migraine-like pain and a spontaneous rat model of migraine-like pain by assessing their pharmacological responsiveness to the small molecule calcitonin gene-related peptide receptor antagonist olcegepant, and the humanised monoclonal calcitonin gene-related peptide antibody ALD405.

Learn More >

Fremanezumab inhibits vasodilatory effects of CGRP and capsaicin in rat cerebral artery – Potential role in conditions of severe vasoconstriction.

CGRP plays a major role in the pathophysiology of migraine. Concomitant, CGRP plays a role in endogenous neurovascular protection from severe vasoconstriction associated with e.g. cerebral or cardiac ischemia. The CGRP antagonistic antibodies Fremanezumab (TEVA Pharmaceuticals) and Erenumab (Novartis/Amgen) have successfully been developed for the prevention of frequent migraine attacks. Whereas these antibodies might challenge endogenous neurovasular protection during severe cerebral or coronary vasoconstriction, potential future therapeutic CGRP agonists might induce migraine-like headaches in migraineurs. In the current study segments of cerebral artery have been used to obtain mechanistic insight of the CGRP-neutralizing anti-body Fremanezumab in neurovascular regulation in vitro. The basilar artery was selected due to its relevance in subarachnoid hemorrhage (SAH). Erenumab is known to block the human CGRP receptor and Fremanezumab to neutralize both human and rat CGRP. Results confirmed that Erenumab does not block the rat CGRP receptor and that Fremanezumab inhibits the vasodilatory effect induced by both human CGRP, rat CGRP and the metabolically stable CGRP analog, SAX in rat basilar artery. Fremanezumab also inhibits the vasodilatory effect of capsaicin in constricted segments of basilar artery. Capsaicin is used as a pharmacological tool to induce secretion of endogenous perivascular CGRP and our studies confirm that the antibody reach the perivascular sensory synaptic cleft and blocks the vasodilatory response of released CGRP in the present in vitro model. Thus, CGRP neutralization might have the mechanistic potential to block vasoprotective responses to severe vasoconstriction provided they reach the site of action and Fremanezumab is an important tool for future investigations of the impact of CGRP physiology.

Learn More >

Interference of Skin Scratching Attenuates Accumulation of Neutrophils in Murine Allergic Contact Dermatitis Model.

We recently reported that swelling resulting from 2,4,6-trinitrochlorobenzene (TNCB) challenge might be associated with recruitment of neutrophils. However, it is not known whether neutrophil recruitment is affected by scratching at inflamed sites or not. Therefore, the effects of an Elizabethan collar on the TNCB-induced upregulation of ELR-positive chemokines (CXCL1, CXCL2, and CXCL5) and neutrophil recruitment were investigated. Mice were sensitized by the application of TNCB on abdominal skin. Then, the mice were challenged three times with TNCB to auricle of the ear. To prevent scratching at inflamed sites, an Elizabethan collar was placed on the mice from just before the first challenge until the end of the experiment. The effects of the Elizabethan collar on the TNCB-induced upregulation of CXCLs chemokines and recruitment of neutrophil were investigated. The increase of ear swelling by TNCB challenge was inhibited by the Elizabethan collar. TNCB-challenge-induced upregulation of TNF-α, IL-1β, IL-6, ELR chemokines, MPO, and ELA2 was also attenuated by the Elizabethan collar. The gene expression of CXCL1, CXCL2, and CXCL5 human homolog IL-8 was enhanced by TNF-α and IL-1β in human dermal fibroblasts and epidermal keratinocytes. We here suggest that scratching the site of inflammation leads to neutrophil accumulation mediated by TNF-α and IL-1β/ELR chemokines in TNCB-challenge-induced contact dermatitis in mice.

Learn More >

MicroRNA-448 modulates the progression of neuropathic pain by targeting sirtuin 1.

MicroRNAs (miRNAs) play crucial roles in the pathogenesis of neuropathic pain. The present study investigated the effects of miR-448 on the progression of neuropathic pain in a rat model of chronic constriction injury (CCI) of the sciatic nerve. Reverse-transcription quantitative polymerase chain reaction was conducted to detect the gene expression. The paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used to assess the pain threshold. The protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α) were detected by ELISA. The target of miR-448 was predicted by TargetScan software. The Student's t-test or one-way ANOVA were used to identify statistical differences among groups. miR-448 was persistently upregulated in CCI rats, and both mechanical allodynia and thermal hyperalgesia in CCI rats were decreased following miR-448 downregulation. The expression levels of IL-1β, IL-6 and TNF-α were significantly increased in CCI rats compared with controls, and these effects were reversed following treatment with a miR-448 inhibitor. A luciferase reporter assay revealed that sirtuin 1 (SIRT1) was a target gene of miR-448. SIRT1 was found to abrogate the effect of miR-448 on neuropathic pain development. Collectively, the results of the present study revealed that miR-448 promoted neuropathic pain in CCI rats by regulating neuroinflammation via SIRT1. Therefore, SIRT1 may be considered as a novel biomarker for neuropathic pain.

Learn More >

Opioid-Induced Hyperalgesia Is Associated with Dysregulation of Circadian Rhythm and Adaptive Immune Pathways in the Mouse Trigeminal Ganglia and Nucleus Accumbens.

The benefits of opioid-based treatments to mitigate chronic pain can be hindered by the side effects of opioid-induced hyperalgesia (OIH) that can lead to higher consumption and risk of addiction. The present study advances the understanding of the molecular mechanisms associated with OIH by comparing mice presenting OIH symptoms in response to chronic morphine exposure (OIH treatment) relative to control mice (CON treatment). Using RNA-Seq profiles, gene networks were inferred in the trigeminal ganglia (TG), a central nervous system region associated with pain signaling, and in the nucleus accumbens (NAc), a region associated with reward dependency. The biological process of nucleic acid processing was over-represented among the 122 genes that exhibited a region-dependent treatment effect. Within the 187 genes that exhibited a region-independent treatment effect, circadian rhythm processes were enriched among the genes over-expressed in OIH relative to CON mice. This enrichment was supported by the differential expression of the period circadian clock 2 and 3 genes (Per2 and Per3). Transcriptional regulators in the PAR bZip family that are influenced by the circadian clock and that modulate neurotransmission associated with pain and drug addiction were also over-expressed in OIH relative to CON mice. Also notable was the under-expression in OIH relative to CON mice of the Toll-like receptor, nuclear factor-kappa beta, and interferon gamma genes and enrichment of the adaptive immune processes. The results from the present study offer insights to advance the effective use of opioids for pain management while minimizing hyperalgesia.

Learn More >

Search