I am a
Home I AM A Search Login

Papers of the Week

Papers: 7 Sep 2019 - 13 Sep 2019

Animal Studies

2019 Dec




The Presence of High Levels of Circulating Trimethylamine N-Oxide Exacerbates Central and Peripheral Inflammation and Inflammatory Hyperalgesia in Rats Following Carrageenan Injection.


Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has recently been shown to promote inflammation in peripheral tissues and the central nervous system (CNS), contributing to the pathogenesis of various human diseases. Here, we examined whether the presence of high levels of circulating TMAO would influence central and peripheral inflammation and inflammatory hyperalgesia in a carrageenan (CG)-induced rat model of inflammation. Rats were treated with vehicle or TMAO in drinking water. After 2 weeks of treatment, rats received intraplantar injection of saline or CG into the hind paw. Acute nociception was unaltered in TMAO-treated rats that had elevated plasma TMAO. Following CG injection, TMAO-treated rats were significantly more sensitive to thermal and mechanical stimulation of the inflamed paw and displayed greater paw edema. Molecular studies revealed that CG injection induced increases in recruitment of neutrophils/macrophages in the paw and activation of microglia in the spinal cord, along with increased activation of nuclear factor (NF)-kB and production of proinflammatory mediators in both vehicle-treated rats and TMAO-treated rats. However, the increases in the above parameters were more pronounced in TMAO-treated rats. Moreover, TMAO treatment decreased protein levels of anti-inflammatory mediator regulator of G protein signaling (RGS)-10 in both saline-injected rats and CG-injected rats. These findings suggest that the presence of high levels of circulating TMAO downregulates anti-inflammatory mediator RGS10 in both peripheral tissues and the CNS, which may increase the susceptibility to inflammatory challenge-induced NF-kB activity, leading to greater increase in production of inflammatory mediators and consequent exacerbation of peripheral inflammation and inflammatory hyperalgesia.