I am a
Home I AM A Search Login

Animal Studies

Share this

CGRP-dependent and independent mechanisms of acute and persistent post-traumatic headache following mild traumatic brain injury in mice.

Acute and persistent post-traumatic headache are often debilitating consequences of traumatic brain injury. Underlying physiological mechanisms of post-traumatic headache and its persistence remain unknown, and there are currently no approved therapies for these conditions. Post-traumatic headache often presents with a migraine-like phenotype. As calcitonin-gene related peptide promotes migraine headache, we explored the efficacy and timing of intervention with an anti- calcitonin-gene related peptide monoclonal antibody in novel preclinical models of acute post-traumatic headache and persistent post-traumatic headache following a mild traumatic brain injury event in mice.

Learn More >

Enhancement of acid-sensing ion channel activity by prostaglandin E2 in rat dorsal root ganglion neurons.

Prostaglandin E2 (PGE2) and proton are typical inflammatory mediators. They play a major role in pain processing and hypersensitivity through activating their cognate receptors expressed in terminals of nociceptive sensory neurons. However, it remains unclear whether there is an interaction between PGE2 receptors and proton-activated acid-sensing ion channels (ASICs). Herein, we show that PGE2 enhanced the functional activity of ASICs in rat dorsal root ganglion (DRG) neurons through EP1 and EP4 receptors. In the present study, PGE2 concentration-dependently increased ASIC currents in DRG neurons. It shifted the proton concentration-response curve upwards, without change in the apparent affinity of proton for ASICs. Moreover, PGE2 enhancement of ASIC currents was partially blocked by EP1 or EP4 receptor antagonist. PGE2 failed to enhance ASIC currents when simultaneous blockade of both EP1 and EP4 receptors. PGE2 enhancement was partially suppressed after inhibition of intracellular PKC or PKA signaling, and completely disappeared after concurrent blockade of both PKC and PKA signaling. PGE2 increased significantly the expression levels of p-PKCε and p-PKA in DRG cells. PGE2 also enhanced proton-evoked action potentials in rat DRG neurons. Finally, peripherally administration of PGE2 dose-dependently exacerbated acid-induced nocifensive behaviors in rats through EP1 and EP4 receptors. Our results indicate that PGE2 enhanced the electrophysiological activity of ASICs in DRG neurons and contributed to acidosis-evoked pain, which revealed a novel peripheral mechanism underlying PGE2 involvement in hyperalgesia by sensitizing ASICs in primary sensory neurons.

Learn More >

Characterization of binding, functional activity and contractile responses of the selective 5-HT receptor agonist lasmiditan.

Triptans are 5-HT receptor agonists (that also display 5-HT receptor affinity) with antimigraine action, contraindicated in patients with coronary artery disease due to their vasoconstrictor properties. Conversely, lasmiditan was developed as an antimigraine 5-HT receptor agonist. To assess the selectivity and cardiovascular effects of lasmiditan, we investigated the binding, functional activity and in vitro/in vivo vascular effects of lasmiditan, and compared it to sumatriptan.

Learn More >

The α7 nicotinic acetylcholine receptor positive allosteric modulator prevents lipopolysaccharide-induced allodynia, hyperalgesia and TNF-α in the hippocampus in mice.

Previous studies have shown that α7 nicotinic acetylcholine receptor (nAChR) has a critical role in the regulation of pain sensitivity and neuroinflammation. However, pharmacological effects of α7 nAChR activation in the hippocampus on neuroinflammatory mechanisms associated with allodynia and hyperalgesia remain unknown. We have determined the effects of 3a,4,5,9b-tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS), an α7 nAChR positive allosteric modulator, on lipopolysaccharide (LPS)-induced allodynia and hyperalgesia in mice. We also evaluated the effects of TQS on immunoreactivity of microglial marker ionized-calcium binding adaptor molecule 1 (Iba-1), phospho-nuclear factor-κB (p-NF-κB p), tumor necrosis factor-alpha (TNF-α), and norepinephrine (NE) level.

Learn More >

The pronociceptive role of 5-HT receptors in ventrolateral orbital cortex in a rat formalin test model.

Recent studies have shown the 5-HT receptors are expressed in regions which are important in pain processing such as the cortex, amygdala, thalamus, PAG, spinal cord and dorsal root ganglia (DRG), suggesting a putative role of 5-HT receptors in pain modulation. The ventrolateral orbital cortex (VLO) is part of an endogenous analgesic system, consisting of the spinal cord – thalamic nucleus submedius (Sm) – VLO – periaqueductal gray (PAG) – spinal cord loop. The present study assessed the possible role of 5-HT receptors in the VLO in formalin-induced inflammatory pain model. Firstly we found that microinjection of selective 5-HT receptor agonists EMD-386088 (5 μg in 0.5 μl) and WAY-208466 (8 μg in 0.5 μl) both augmented 5% formalin-induced nociceptive behavior. Microinjection of selective 5-HT receptor antagonist SB-258585 (1,2 and 4 μg in 0.5 μl) significantly reduced formalin-induced flinching. Besides, the pronociceptive effects of EMD-386088 and WAY-208466 were dramatically reduced by SB-258585, implicating 5-HT receptor mechanisms in mediating these responses. In addition, the pronociceptive effect of EMD-386088 was also prevented by the adenylate cyclase (AC) inhibitor SQ-22536 (2 nmol in 0.5 μl) and the protein kinase A (PKA) inhibitor H89 (10 nmol in 0.5 μl), respectively. We further confirmed the above results with quantification of spinal c-fos expression. Taken together, our results suggested that 5-HT receptors play a pronociceptive role in the VLO in the rat formalin test due to its activation of AC – PKA pathway. Therefore, cerebral cortical 5-HT receptors could be a new target to develop analgesic drugs.

Learn More >

DLK mediates the neuronal intrinsic immune response and regulates glial reaction and neuropathic pain.

Inflammatory response triggered by nerve injury plays important roles in the development of neurological disorders, such as neuropathic pain. The signaling events leading to inflammation in the nervous system remain poorly understood. Here, by deleting Dlk in sensory neurons driven by Wnt1a-Cre, we show that dual leucine zipper kinase (DLK) is required for the neuronal intrinsic immune response to induce cytokines and chemokines such as Ccl2, Ccl7, and Ccl12 upon nerve injury. The DLK-controlled injury response in sensory neurons could regulate CD11b immune cell infiltration in the dorsal root ganglia, as well as microgliosis and astrogliosis in the spinal dorsal horn but not the ventral horn. Deficiency of Dlk drastically alleviates the neuropathic pain elicited by chronic constriction injury of the sciatic nerve. Thus, DLK is an essential component that mediates the neuronal intrinsic immune response to nerve injury in sensory neurons and regulates inflammation in the spinal cord.

Learn More >

Ethosuximide improves chronic pain-induced anxiety- and depression-like behaviors.

Chronic pain is a heavy burden disease. Current treatments are generally weakly effective or associated with adverse effects. New therapeutic approaches are therefore needed. Recent studies have suggested T-type calcium channels as an attractive target for the treatment of chronic pain. In this perspective, it was decided to perform a preclinical evaluation of the efficacy of ethosuximide, a T-type channel blocker used clinically as an antiepileptic, as a novel pharmacological treatment for chronic pain. Assessment of the effect of ethosuximide was thus made in both nociception and pain-related comorbidities as anxiety and depression are frequently encountered in chronic pain patients. Our results show that such symptoms occurred in three animal models of chronic pain designed to reflect traumatic neuropathic, chemotherapy-induced neuropathic and inflammatory pain conditions. Administration of ethosuximide reduced both chronic pain and comorbidities with a marked intensity ranging from partial reduction to a complete suppression of symptoms. These results make ethosuximide, and more broadly the inhibition of T-type calcium channels, a new strategy for the management of uncontrolled chronic pain, likely to improve not only pain but also the accompanying anxiety and depression.

Learn More >

Minocycline Relieves Depressive-Like Behaviors in Rats With Bone Cancer Pain by Inhibiting Microglia Activation in Hippocampus.

Pain and depression are highly prevalent symptoms in cancer patients. They tend to occur simultaneously and affect each other and share biological pathways and neurotransmitters. In this study, we investigated the roles of microglia in the hippocampus in the comorbidity of bone cancer pain and depressive-like behaviors in an animal model of bone cancer pain.

Learn More >

Dermorphin [D-Arg2, Lys4] (1-4) amide inhibits below-level heat hypersensitivity in mice after contusive thoracic spinal cord injury.

Opioid use for chronic pain is limited by severe central adverse effects. We examined whether activating mu-opioid receptors (MORs) in the peripheral nervous system attenuates spinal cord injury (SCI) pain-like behavior in mice. We produced a contusive SCI at the T10 vertebral level and examined motor and sensory dysfunction for 6 weeks. At 6 weeks, we tested the effect of subcutaneous (s.c.) injection of dermorphin [D-Arg2, Lys4] (1-4) amide (DALDA), a peripherally acting MOR-preferring agonist, on mechanical and heat hypersensitivity. Basso mouse scale score was significantly decreased after SCI, and mice showed hypersensitivity to mechanical and heat stimulation at the hind paw beginning at 2 weeks, as indicated by increased paw withdrawal frequency to mechanical stimulation and decreased paw withdrawal latency to heat stimulation. In wild-type SCI mice, DALDA (1 mg/kg, s.c.) attenuated heat but not mechanical hypersensitivity. The effect was blocked by pretreatment with an intraperitoneal injection of methylnaltrexone (5 mg/kg), a peripherally restricted opioid receptor antagonist, and was also diminished in Pirt-MOR conditional knockout mice. DALDA did not adversely affect exploratory activity or induced preference to drug treatment in SCI mice. In vivo calcium imaging showed that DALDA (1, 10 mg/kg, s.c.) inhibited responses of small DRG neurons to noxious heat stimulation in Pirt-GCaMP6s mice after SCI. Western blot analysis showed upregulation of MOR in the lumbar spinal cord and sciatic nerves at 6 weeks post-SCI. Our findings suggest that peripherally acting MOR agonist may inhibit heat hypersensitivity below the injury level with minimal adverse effects.

Learn More >

A causal role for TRESK loss of function in migraine mechanisms.

The two-pore potassium channel, TRESK has been implicated in nociception and pain disorders. We have for the first time investigated TRESK function in human nociceptive neurons using induced pluripotent stem cell-based models. Nociceptors from migraine patients with the F139WfsX2 mutation show loss of functional TRESK at the membrane, with a corresponding significant increase in neuronal excitability. Furthermore, using CRISPR-Cas9 engineering to correct the F139WfsX2 mutation, we show a reversal of the heightened neuronal excitability, linking the phenotype to the mutation. In contrast we find no change in excitability in induced pluripotent stem cell derived nociceptors with the C110R mutation and preserved TRESK current; thereby confirming that only the frameshift mutation is associated with loss of function and a migraine relevant cellular phenotype. We then demonstrate the importance of TRESK to pain states by showing that the TRESK activator, cloxyquin, can reduce the spontaneous firing of nociceptors in an in vitro human pain model. Using the chronic nitroglycerine rodent migraine model, we demonstrate that mice lacking TRESK develop exaggerated nitroglycerine-induced mechanical and thermal hyperalgesia, and furthermore, show that cloxyquin conversely is able to prevent sensitization. Collectively, our findings provide evidence for a role of TRESK in migraine pathogenesis and its suitability as a therapeutic target.

Learn More >

Search