I am a
Home I AM A Search Login

Animal Studies

Share this

Maresin 1 Attenuates Radicular Pain Through the Inhibition of NLRP3 Inflammasome-Induced Pyroptosis via NF-κB Signaling.

The exposure of the nucleus pulposus (NP) causes an immune and inflammatory response, which is intrinsically linked to the pathogenesis of radicular pain. As a newly discovered pro-resolving lipid mediator, maresin 1 (MaR1) could exert powerful inflammatory resolution, neuroprotection, and analgesic activities. In the present research, the analgesic effect of MaR1 was observed. Then, the potential mechanism by which MaR1 attenuated radicular pain was also analyzed in a rat model.

Learn More >

Evaluation of Biased and Balanced Salvinorin A Analogs in Preclinical Models of Pain.

In the search for safer, non-addictive analgesics, kappa opioid receptor (KOPr) agonists are a potential target, as unlike mu-opioid analgesics, they do not have abuse potential. Salvinorin A (SalA) is a potent and selective KOPr agonist, however, clinical utility is limited by the short duration of action and aversive side effects. Biasing KOPr signaling toward G-protein activation has been highlighted as a key cellular mechanism to reduce the side effects of KOPr agonists. The present study investigated KOPr signaling bias and the acute antinociceptive effects and side effects of two novel analogs of SalA, 16-Bromo SalA and 16-Ethynyl SalA. 16-Bromo SalA showed G-protein signaling bias, whereas 16-Ethynyl SalA displayed balanced signaling properties. In the dose-response tail-withdrawal assay, SalA, 16-Ethynyl SalA and 16-Bromo SalA were more potent than the traditional KOPr agonist U50,488, and 16-Ethynyl SalA was more efficacious. 16-Ethynyl SalA and 16-Bromo SalA both had a longer duration of action in the warm water tail-withdrawal assay, and 16-Ethynyl had greater antinociceptive effect in the hot-plate assay, compared to SalA. In the intraplantar 2% formaldehyde test, 16-Ethynyl SalA and 16-Bromo SalA significantly reduced both nociceptive and inflammatory pain-related behaviors. Moreover, 16-Ethynyl SalA and 16-Bromo SalA had no anxiogenic effects in the marble burying task, and 16-Bromo SalA did not alter behavior in the elevated zero maze. Overall, 16-Ethynyl SalA significantly attenuated acute pain-related behaviors in multiple preclinical models, while the biased KOPr agonist, 16-Bromo SalA, displayed modest antinociceptive effects, and lacked anxiogenic effects.

Learn More >

Novel TRPV1 Channel Agonists With Faster and More Potent Analgesic Properties Than Capsaicin.

The transient receptor potential vanilloid 1 (TRPV1) ion channel is a member of the family of Transient Receptor Potential (TRP) channels that acts as a molecular detector of noxious signals in primary sensory neurons. Activated by capsaicin, heat, voltage and protons, it is also well known for its desensitization, which led to the medical use of topically applied TRPV1 agonist capsaicin for its long-lasting analgesic effects. Here we report three novel small molecules, which were identified using a Structure-Based Virtual Screening for TRPV1 from the ZINC database. The three compounds were tested using electrophysiological assays, which confirmed their capsaicin-like agonist activity. von Frey filaments were used to measure the analgesic effects of the compounds applied topically on tactile allodynia induced by intra-plantar carrageenan. All compounds had anti-nociceptive activity, but two of them showed faster and longer lasting analgesic effects than capsaicin. The present results suggest that TRPV1 agonists different from capsaicin could be used to develop topical analgesics with faster onset and more potent effects.

Learn More >

Pharmacological Characterization of a Novel Mouse Model of Cholestatic Pruritus.

Patients with cholestatic liver diseases, such as primary biliary cirrhosis, usually suffer from pruritus. However, the pathogenesis of cholestatic pruritus is unclear, and there is no current effective treatment for it. In order to find a treatment for the condition, an appropriate mouse model should be developed. Therefore, here, we established a surgically-induced mouse model of cholestatic pruritus. The bile duct was ligated in order to block bile secretion from the anterior, right, and left lobes, with the exception of the caudate lobe. Serum levels of total bile acid increased after bile duct ligation (BDL). The spontaneous hind paw scratching was also increased in BDL mice. Spontaneous scratching was reduced in BDL mice by naloxone (µ-opioid receptor antagonist), U-50,488H (κ-opioid receptor agonist), and clonidine (α2-adrenoceptor agonist). Azelastine (H receptor antagonist with membrane-stabilizing activity) slightly reduced scratching. However, terfenadine (H receptor antagonist), methysergide (serotonin (5-HT) receptor antagonist), ondansetron (5-HT receptor antagonist), proteinase-activated receptor 2-neutralizing antibody, fluvoxamine (selective serotonin reuptake inhibitor), milnacipran (serotonin-noradrenalin reuptake inhibitor), and cyproheptadine (H and 5-HT receptor antagonist) did not affect scratching. These results suggested that partial obstruction of bile secretion in mice induced anti-histamine-resistant itching and that central opioid system is involved in cholestatic itching.

Learn More >

Inhibition of microRNA-155 Reduces Neuropathic Pain During Chemotherapeutic Bortezomib via Engagement of Neuroinflammation.

As a chemotherapeutic agent, bortezomib (BTZ) is used for the treatment of multiple myeloma with adverse effect of painful peripheral neuropathy. Our current study was to determine the inhibitory effects of blocking microRNA-155 (miR-155) signal on BTZ-induced neuropathic pain and the underlying mechanisms. We employed real time RT-PCR and western blot analysis to examine the miR-155 and expression of – tumor necrosis factor-α receptor (TNFR1) in the dorsal horn of the spinal cord. Its downstream signals p38-MAPK and JNK and transient receptor potential ankyrin 1 (TRPA1) were also determined. Mechanical pain and cold sensitivity were assessed by behavioral test. In result, inhibition of miR-155 significantly attenuated mechanical allodynia and thermal hyperalgesia in BTZ rats, which was accompanied with decreasing expression of TNFR1, p38-MAPK, JNK, and TRPA1. In contrast, miRNA-155 mimics amplified TNFR1-TRPA1 pathway and augmented mechanical pain and cold sensitivity. In addition, mechanical and thermal hypersensitivity induced by miRNA-155 mimics were attenuated after blocking TNFR1, p38-MAPK, JNK, and TRPA1. Overall, we show the key role of miR-155 in modifying BTZ-induced neuropathic pain through TNFR1-TRPA1 pathway, suggesting that miR-155 is a potential target in preventing neuropathic pain development during intervention of BTZ.

Learn More >

Correlation of Artemin and GFRα3 With Osteoarthritis Pain: Early Evidence From Naturally Occurring Osteoarthritis-Associated Chronic Pain in Dogs.

Arthritis, including osteoarthritis (OA) and other musculoskeletal-associated pain, is a worldwide problem, however, effective drug options are limited. Several receptors, neurotransmitters, and endogenous mediators have been identified in rodent models, but the relevance of these molecules in disease-associated pain is not always clear. Artemin, a neurotrophic factor, and its receptor, glial-derived neurotrophic factor (GDNF) family receptor alpha-3 (GFRα3), have been identified as involved in pain in rodents. Their role in OA-associated pain is unknown. To explore a possible association, we analyzed tissue from naturally occurring OA in dogs to characterize the correlation with chronic pain. We used behavioral assessment, objective measures of limb use, and molecular tools to identify whether artemin and GFRα3 might be associated with OA pain. Our results using banked tissue from well-phenotyped dogs indicates that artemin/GFRα3 may play an important, and hitherto unrecognized, role in chronic OA-associated pain. Elevated serum levels of artemin from osteoarthritic humans compared to healthy individuals suggest translational relevance. Our data provide compelling evidence that the artemin/GFRα3 signaling pathway may be important in OA pain in both non-humans and humans and may ultimately lead to novel therapeutics.

Learn More >

Long noncoding RNA H19 in the injured dorsal root ganglion contributes to peripheral nerve injury-induced pain hypersensitivity.

Peripheral nerve injury-induced changes in gene transcription and translation in the dorsal root ganglion (DRG) play a critical role in the development and maintenance of neuropathic pain. Long noncoding RNAs (lncRNAs) regulate gene expression. Here, we report that peripheral nerve injury caused by ligation of the fourth spinal nerve (SNL) led to a time-dependent increase in the expression in H19, an lncRNA, in the injured DRG. Microinjection of a specific H19 siRNA, but not negative control scrambled siRNA, into the injured DRG 4 days before SNL alleviated mechanical allodynia and thermal hyperalgesia on days 3 and 5 post-SNL. Additionally, DRG microinjection of the H19 siRNA on day 7 after SNL reduced mechanical allodynia and thermal hyperalgesia on days 10 and 12 post-SNL. DRG microinjection of neither siRNA affected locomotor activity and acute basal responses to mechanical and thermal stimuli. Our findings suggest that H19 participates in the peripheral mechanism underlying the development and maintenance of neuropathic pain. H19 may be a potential target for treatment of this disorder.

Learn More >

μ Opioid Receptor-Triggered Notch-1 Activation Contributes to Morphine Tolerance: Role of Neuron-Glia Communication.

The development of analgesic tolerance to opioids is an important limitation in the management of chronic pain. Spinal cord glial cell activation appears to play a pivotal role in the development and maintenance of opioid tolerance, indicating the presence of an opioid-induced neuronal-glial interaction; however, how opioids drive this cross-talk is still elusive. In search of treatments to attenuate morphine analgesic tolerance, our research focused on the role of Notch signaling pathway, one of the most important mechanisms of cell-to-cell interactions, in the spinal dorsal horn after morphine repeated exposure and whether Notch inhibition attenuates morphine analgesic tolerance. Double immunofluorescence experiments on spinal sections from morphine-tolerant mice showed a neuronal localization of Notch-1 receptor whereas the Notch ligand Jagged was localized on neighboring astrocytes. Morphine-induced μ opioid receptor (MOR) stimulation triggered Notch-1 signaling activation and this event was mediated by astrocyte JNK activation. Notch-1 activation selectively reduced the expression of histone deacetylase (HDAC)-1, resulting in an overphosphorylation of PKC and ERK, kinases involved in MOR phosphorylation and internalization after repeated morphine exposure. Notch-1 signaling inhibition, through intrathecal administration of the γ-secretase inhibitor, DAPT, counteracted PKC and ERK overphosphorylation, MOR internalization, and analgesic tolerance. Conversely, the HDAC-1 inhibitor, LG325, further aggravated MOR internalization, PKC overphosphorylation, and analgesic tolerance.Our findings implicate the MOR-triggered Notch-1 signaling in promoting MOR internalization and morphine analgesic tolerance by epigenetic regulation mechanisms. These data suggest that Notch-1 inhibitors could represent an innovative therapeutic perspective for the management of opioid tolerance in chronic pain therapy.

Learn More >

Sensitization of spinal itch transmission neurons in a mouse model of chronic itch requires an astrocytic factor.

Chronic itch is a highly debilitating symptom among patients with inflammatory skin diseases. Recent studies have revealed that gastrin-releasing peptide (GRP) and its receptor (gastrin-releasing peptide receptor [GRPR]) in the spinal dorsal horn (SDH) play a central role in itch transmission.

Learn More >

Inhibition of nociceptive dural input to the trigeminocervical complex through oxytocinergic transmission.

Migraine is a complex brain disorder that involves abnormal activation of the trigeminocervical complex (TCC). Since an increase of oxytocin concentration has been found in cerebrospinal fluid in migrainous patients and intranasal oxytocin seems to relieve migrainous pain, some studies suggest that the hypothalamic neuropeptide oxytocin may play a role in migraine pathophysiology. However, it remains unknown whether oxytocin can interact with the trigeminovascular system at TCC level. The present study was designed to test the above hypothesis in a well-established electrophysiological model of migraine. Using anesthetized rats, we evaluated the effect of oxytocin on TCC neuronal activity in response to dural nociceptive trigeminovascular activation. We found that spinal oxytocin significantly reduced TCC neuronal firing evoked by meningeal electrical stimulation. Furthermore, pretreatment with L-368,899 (a selective oxytocin receptor antagonist, OTR) abolished the oxytocin-induced inhibition of trigeminovascular neuronal responses. This study provides the first direct evidence that oxytocin, probably by OTR activation at TCC level inhibited dural nociceptive-evoked action potential in this complex. Thus, targeting OTR at TCC could represent a new avenue to treat migraine.

Learn More >

Search