I am a
Home I AM A Search Login

Animal Studies

Share this

Distinct changes in chronic pain sensitivity and oxytocin receptor expression in a new rat model (Wisket) of schizophrenia.

Clinical studies have shown that schizophrenia is accompanied by hypoalgesia. Accordingly, we have previously reported that a chronic schizophrenia-related rat substrain (Wisket) showed decreased acute heat pain sensitivity. The aim of the present study was to determine the mechanical pain sensitivity and the effects of opioid ligands in a chronic osteoarthritic pain model generated using Wisket rats. Our previous molecular biological studies indicated that the impairment in opioid and cannabinoid receptor functions observed in these animals did not explain their altered pain sensitivity. Therefore, we aimed to investigate another endogenous antinociceptive system, i.e., the oxytocinergic system (which is also implicated in schizophrenia) via the determination the brain-region specific oxytocin receptor mRNA expression in Wisket rats. Osteoarthritis was induced in male adult control Wistar rats without any interventions and in Wisket rats after juvenile social isolation and ketamine treatment. The degree of allodynia and the effects of systemic morphine or intrathecal endomorphin-1 administration were determined. Furthermore, the expression of the oxytocin receptor mRNA was assessed in different brain structures (prefrontal cortex, striatum, diencephalon, brainstem, and olfactory bulb). A lower degree of allodynia was observed in the Wisket group compared with control animals 1 and 2 weeks after the induction of osteoarthritis, which was accompanied by a comparable degree of edema. Systemically or intrathecally applied opioids caused similar time-response curves in both groups, with apparently shorter effects in Wisket animals. The expression of the oxytocin receptor mRNA was lower in most of the brain regions (with the exception of the diencephalon) investigated in Wisket rats vs. the control animals. In summary, both acute and chronic hypoalgesia (as nonspecific symptoms in patients with schizophrenia) can be simulated in Wisket animals as endophenotypes despite the impairment of the endogenous antinociceptive systems evaluated. Thus, this model might be an appropriate tool for further investigation of the molecular basis of altered pain perception in schizophrenia.

Learn More >

Tyrosine Kinase Inhibitors Reduce NMDA NR1 Subunit Expression, Nuclear Translocation, and Behavioral Pain Measures in Experimental Arthritis.

In the lumbar spinal cord dorsal horn, release of afferent nerve glutamate activates the neurons that relay information about injury pain. Here, we examined the effects of protein tyrosine kinase (PTK) inhibition on NMDA receptor NR1 subunit protein expression and subcellular localization in an acute experimental arthritis model. PTK inhibitors genistein and lavendustin A reduced cellular histological translocation of NMDA NR1 in the spinal cord occurring after the inflammatory insult and the nociceptive behavioral responses to heat. The PTK inhibitors were administered into lumbar spinal cord by microdialysis, and secondary heat hyperalgesia was determined using the Hargreaves test. NMDA NR1 cellular protein expression and nuclear translocation were determined by immunocytochemical localization with light and electron microscopy, as well as with Western blot analysis utilizing both C- and N-terminal antibodies. Genistein and lavendustin A (but not inactive lavendustin B or diadzein) effectively reduced (i) pain related behavior, (ii) NMDA NR1 subunit expression increases in spinal cord, and (iii) the shift of NR1 from a cell membrane to a nuclear localization. Genistein pre-treatment reduced these events that occur within 4 h after inflammatory insult to the knee joint with kaolin and carrageenan (k/c). Cycloheximide reduced glutamate activated upregulation of NR1 content confirming synthesis of new protein in response to the inflammatory insult. In addition to this data, genistein or staurosporin inhibited upregulation of NMDA NR1 protein and nuclear translocation after treatment of human neuroblastoma clonal cell cultures (SH-SY5Y) with glutamate or NMDA (4 h). These studies provide evidence that inflammatory activation of peripheral nerves initiates increase in NMDA NR1 in the spinal cord coincident with development of pain related behaviors through glutamate non-receptor, PTK dependent cascades.

Learn More >

Regulation of CSF and Brain Tissue Sodium Levels by the Blood-CSF and Blood-Brain Barriers During Migraine.

Cerebrospinal fluid (CSF) and brain tissue sodium levels increase during migraine. However, little is known regarding the underlying mechanisms of sodium homeostasis disturbance in the brain during the onset and propagation of migraine. Exploring the cause of sodium dysregulation in the brain is important, since correction of the altered sodium homeostasis could potentially treat migraine. Under the hypothesis that disturbances in sodium transport mechanisms at the blood-CSF barrier (BCSFB) and/or the blood-brain barrier (BBB) are the underlying cause of the elevated CSF and brain tissue sodium levels during migraines, we developed a mechanistic, differential equation model of a rat's brain to compare the significance of the BCSFB and the BBB in controlling CSF and brain tissue sodium levels. The model includes the ventricular system, subarachnoid space, brain tissue and blood. Sodium transport from blood to CSF across the BCSFB, and from blood to brain tissue across the BBB were modeled by influx permeability coefficients and , respectively, while sodium movement from CSF into blood across the BCSFB, and from brain tissue to blood across the BBB were modeled by efflux permeability coefficients and , respectively. We then performed a global sensitivity analysis to investigate the sensitivity of the ventricular CSF, subarachnoid CSF and brain tissue sodium concentrations to pathophysiological variations in , , and . Our results show that the ventricular CSF sodium concentration is highly influenced by perturbations of , and to a much lesser extent by perturbations of . Brain tissue and subarachnoid CSF sodium concentrations are more sensitive to pathophysiological variations of and than variations of and within 30 min of the onset of the perturbations. However, is the most sensitive model parameter, followed by and , in controlling brain tissue and subarachnoid CSF sodium levels within 3 h of the perturbation onset.

Learn More >

Gut Microbiota Dysbiosis Enhances Migraine-Like Pain Via TNFα Upregulation.

Migraine is one of the most disabling neurological diseases worldwide; however, the mechanisms underlying migraine headache are still not fully understood and current therapies for such pain are inadequate. It has been suggested that inflammation and neuroimmune modulation in the gastrointestinal tract could play an important role in the pathogenesis of migraine headache, but how gut microbiomes contribute to migraine headache is unclear. In the present study, we investigated the effect of gut microbiota dysbiosis on migraine-like pain using broad-spectrum antibiotics and germ-free (GF) mice. We observed that antibiotics treatment-prolonged nitroglycerin (NTG)-induced acute migraine-like pain in wild-type (WT) mice and the pain prolongation was completely blocked by genetic deletion of tumor necrosis factor-alpha (TNFα) or intra-spinal trigeminal nucleus caudalis (Sp5C) injection of TNFα receptor antagonist. The antibiotics treatment extended NTG-induced TNFα upregulation in the Sp5C. Probiotics administration significantly inhibited the antibiotics-produced migraine-like pain prolongation. Furthermore, NTG-induced migraine-like pain in GF mice was markedly enhanced compared to that in WT mice and gut colonization with fecal microbiota from WT mice robustly reversed microbiota deprivation-caused pain enhancement. Together, our results suggest that gut microbiota dysbiosis contributes to chronicity of migraine-like pain by upregulating TNFα level in the trigeminal nociceptive system.

Learn More >

SAP102 contributes to hyperalgesia formation in the cancer induced bone pain rat model by anchoring NMDA receptors.

The pathogenesis of cancer induced bone pain (CIBP) is extremely complex, and glutamate receptor dysfunction plays an important role in the formation of CIBP. Synapse-associated protein 102 (SAP102) anchors glutamate receptors in the postsynaptic membrane. However, its effect on hyperalgesia formation in CIBP has not been clarified. This study investigated the role of SAP102 in the formation of hyperalgesia in rats with CIBP SAP102 is present in spinal dorsal horn neurons, but not in astrocytes or microglia. NMDAR-NR2B is localized with neurons. In addition, SAP102 and NMDAR-NR2B expression levels in spinal dorsal horn tissues were detected by Western blot and co-immunoprecipitation. Intrathecal injection of lentiviral vector of RNAi to knockdown SAP102 expression in the spinal dorsal horn significantly attenuated abnormal mechanic pain when compared to non-coding lentiviral vector. These findings indicate that SAP102 can anchor NMDA receptors to affect hyperalgesia formation in bone cancer pain.

Learn More >

Oxidative Stress Contributes to Hyperalgesia in Osteoporotic Mice.

Chronic pain is one of the most common complications of postmenopausal osteoporosis. Since oxidative stress is involved in the pathogenesis of postmenopausal osteoporosis, we explored whether oxidative stress contributes to postmenopausal osteoporotic pain.

Learn More >

Liquiritin Alleviates Pain Through Inhibiting CXCL1/CXCR2 Signaling Pathway in Bone Cancer Pain Rat.

Bone cancer pain (BCP) is an intractable clinical problem, and lacked effective drugs for treating it. Recent research showed that several chemokines in the spinal cord are involved in the pathogenesis of BCP. In this study, the antinociceptive effects of liquiritin, which is an active component extracted from Glycyrrhizae Radix, were tested and the underlying mechanisms targeting spinal dorsal horn (SDH) were investigated. The BCP group displayed a significant decrease in the mechanical withdrawal threshold on days 6, 12, and 18 when compared with sham groups. Intrathecal administration of different doses of liquiritin alleviated mechanical allodynia in BCP rats. The results of immunofluorescent staining and western blotting showed that liquiritin inhibited BCP-induced activation of astrocytes in the spinal cord. Moreover, intrathecal administration of liquiritin effectively inhibited the activation of CXCL1/CXCR2 signaling pathway and production of IL-1β and IL-17 in BCP rats. In astroglial-enriched cultures, Lipopolysaccharides (LPS) elicited the release of chemokine CXCL1, and the release was decreased in a dose-dependent manner by liquiritin. In primary neurons, liquiritin indirectly reduced the increase of CXCR2 by astroglial-enriched-conditioned medium but not directly on the CXCR2 target site. These results suggested that liquiritin effectively attenuated BCP in rats by inhibiting the activation of spinal astrocytic CXCL1 and neuronal CXCR2 pathway. These findings provided evidence regarding the the antinociceptive effect of liquiritin on BCP.

Learn More >

TTX-Resistant Sodium Channels Functionally Separate Silent From Polymodal C-nociceptors.

Pronounced activity-dependent slowing of conduction has been used to characterize mechano-insensitive, "silent" nociceptors and might be due to high expression of Na1.8 and could, therefore, be characterized by their tetrodotoxin-resistance (TTX-r). Nociceptor-class specific differences in action potential characteristics were studied by: (i) calcium imaging in single porcine nerve growth factor (NGF)-responsive neurites; (ii) extracellular recordings in functionally identified porcine silent nociceptors; and (iii) patch-clamp recordings from murine silent nociceptors, genetically defined by nicotinic acetylcholine receptor subunit alpha-3 (CHRNA3) expression. Porcine TTX-r neurites ( = 26) had more than twice as high calcium transients per action potential as compared to TTX-s neurites ( = 18). In pig skin, silent nociceptors ( = 14) characterized by pronounced activity-dependent slowing of conduction were found to be TTX-r, whereas polymodal nociceptors were TTX-s ( = 12) and had only moderate slowing. Mechano-insensitive cold nociceptors were also TTX-r but showed less activity-dependent slowing than polymodal nociceptors. Action potentials in murine silent nociceptors differed from putative polymodal nociceptors by longer duration and higher peak amplitudes. Longer duration AP in silent murine nociceptors linked to increased sodium load would be compatible with a pronounced activity-dependent slowing in pig silent nociceptors and longer AP durations could be in line with increased calcium transients per action potential observed in TTX-resistant NGF responsive porcine neurites. Even though there is no direct link between slowing and TTX-resistant channels, the results indicate that axons of silent nociceptors not only differ in their receptive but also in their axonal properties.

Learn More >

TRPV1 in experimental autoimmune prostatitis.

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a disorder that is characterized by persistent pelvic pain in men of any age. Although several studies suggest that the transient receptor potential vanilloid 1 (TRPV1) channel is involved in various pathways of chronic pain, the TRPV1 channel has not been implicated in chronic pelvic pain associated with CP/CPPS.

Learn More >

The multifunctional peptide DN-9 produced peripherally acting antinociception in inflammatory and neuropathic pain via mu and kappa opioid receptors.

Considerable effort has recently been directed at developing multifunctional opioid drugs to minimize the unwanted side-effects of opioid analgesics. We developed a novel multifunctional agonist named DN-9. Here, we studied the analgesic profiles and related side-effects of peripheral DN-9 in various pain models.

Learn More >

Search