I am a
Home I AM A Search Login

Animal Studies

Share this

P2Y2 Receptors Mediate Masseter Muscle Mechanical Hypersensitivity in Rats.

PY receptors (PYRs) are among the various receptors that play an important role in nociception. The goal of this research was to investigate possible PYR expression changes in the trigeminal ganglion (TRG) in bilateral masseter muscle (MM) hypersensitivity following unilateral MM inflammation. The impact of unilateral intramasseteric administration of PYR antagonist on bilateral MM hypersensitivity was also explored.

Learn More >

Botulinum toxin type A promotes microglial M2 polarization and suppresses chronic constriction injury-induced neuropathic pain through the P2X7 receptor.

Switching microglial polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype represents a novel therapeutic strategy for neuropathic pain (NP). This study aims to investigate whether botulinum toxin type A (BTX-A) regulates microglial M1/M2 polarization by inhibiting P2X7 expression in a rat model of NP.

Learn More >

Morphine Antinociception Restored by Use of Methadone in the Morphine-Resistant Inflammatory Pain State.

The antinociceptive effect of methadone in the morphine-resistant inflammatory pain state was described in the paw-withdrawal test using the complete Freund's adjuvant (CFA)-induced mouse inflammatory pain model. After intraplantar (i.pl.) injection of CFA, thermal hyperalgesia was observed in the ipsilateral paw. The antinociceptive effects of subcutaneous (s.c.) injection of morphine, fentanyl, and oxycodone against thermal hyperalgesia in the inflammatory pain state were reduced in the ipsilateral paw 7 days after CFA pretreatment. On the contrary, the antinociceptive effect of s.c. injection of methadone was maintained in the ipsilateral paw 7 days after CFA pretreatment. The suppressed morphine antinociception in the CFA model mice was bilaterally restored following s.c. treatment with methadone 20 min prior to or 3 days after CFA pretreatment. The suppressed morphine antinociception was also bilaterally restored by intraperitoneal treatment with MK-801 30 min prior to CFA pretreatment; however, the s.c. injection of morphine 30 min prior to CFA pretreatment failed to restore the suppressed morphine antinociception in the CFA model mice. The expression level of mRNA for µ-opioid receptors 7 days after i.pl. pretreatment was not significantly changed by i.pl. pretreatment with CFA or s.c. pretreatment with methadone. In conclusion, methadone is extremely effective against thermal hyperalgesia in the morphine-resistant inflammatory pain state, and restores suppressed morphine antinociception in the inflammatory pain state without altering the expression level of mRNA for µ-opioid receptors.

Learn More >

Oxytocin Elicits Itch Scratching Behavior via Spinal GRP/GRPR System.

Oxytocin (OT), a neuropeptide involved in the regulation of complex social and sexual behavior in mammals, has been proposed as a treatment for a number of psychiatric disorders including pain. It has been well documented that central administration of OT elicits strong scratching and grooming behaviors in rodents. However, these behaviors were only described as symptoms, few studies have investigated their underlying neural mechanisms. Thus, we readdressed this question and undertook an analysis of spinal circuits underlying OT-induced scratching behavior in the present study. We demonstrated that intrathecal OT induced robust but transient hindpaw scratching behaviors by activating spinal OT receptors (OTRs). Combining the pre-clinical and clinical evidence, we speculated that OT-induced scratching may be an itch symptom. Further RNAscope studies revealed that near 80% spinal GRP neurons expressed OTRs. OT activated the expression of mRNA in spinal GRP neurons. Chemical ablation of GRPR neurons significantly reduced intrathecal OT-induced scratching behaviors. Given GRP/GRPR pathway plays an important role in spinal itch transmission, we proposed that OT binds to the OTRs expressed on the GRP neurons, and activates GRP/GRPR pathway to trigger itch-scratching behaviors in mice. These findings provide novel evidence relevant for advancing understanding of OT-induced behavioral changes, which will be important for the development of OT-based drugs to treat a variety of psychiatric disorders.

Learn More >

The Interaction Between Spinal PDGFRβ and μ Opioid Receptor in the Activation of Microglia in Morphine-Tolerant Rats.

Opioid tolerance remains a challenging problem, which limits prolonged drug usage in clinics. Previous studies have shown a fundamental role of platelet-derived growth factor receptor β submit (PDGFRβ) in morphine tolerance. The aim of this study was to investigate the mechanisms of spinal PDGFRβ activation in morphine tolerance.

Learn More >

Anti-GD2 induced allodynia in rats can be reduced by pretreatment with DFMO.

Anti-GD2 therapy with dinutuximab is effective in improving the survival of high-risk neuroblastoma patients in remission and after relapse. However, allodynia is the major dose-limiting side effect, hindering its use for neuroblastoma patients at higher doses and for other GD2-expressing malignancies. As polyamines can enhance neuronal sensitization, including development of allodynia and other forms of pathological pain, we hypothesized that polyamine depletion might prove an effective strategy for relief of anti-GD2 induced allodynia.

Learn More >

Progesterone and Allopregnanolone Rapidly Attenuate Estrogen-Associated Mechanical Allodynia in Rats with Persistent Temporomandibular Joint Inflammation.

Temporomandibular joint disorder (TMD) is associated with pain in the joint (temporomandibular joint, TMJ) and muscles involved in mastication. TMD pain dissipates following menopause but returns in some women undergoing estrogen replacement therapy. Progesterone has both anti-inflammatory and antinociceptive properties, while estrogen's effects on nociception are variable and highly dependent on both natural hormone fluctuations and estrogen dosage during pharmacological treatments, with high doses increasing pain. Allopregnanolone, a progesterone metabolite and positive allosteric modulator of the GABA receptor, also has antinociceptive properties. While progesterone and allopregnanolone are antinociceptive, their effect on estrogen-exacerbated TMD pain has not been determined. We hypothesized that removing the source of endogenous ovarian hormones would reduce inflammatory allodynia in the TMJ of rats and both progesterone and allopregnanolone would attenuate the estrogen-provoked return of allodynia. Baseline mechanical sensitivity was measured in female Sprague-Dawley rats (150-175 g) using the von Frey filament method followed by a unilateral injection of complete Freund's adjuvant (CFA) into the TMJ. Mechanical allodynia was confirmed 24 h later; then rats were ovariectomized or received sham surgery. Two weeks later, allodynia was reassessed and rats received one of the following subcutaneous hormone treatments over 5 days: a daily pharmacological dose of estradiol benzoate (E2; 50 μg/kg), daily E2 and pharmacological to sub-physiological doses of progesterone (P4; 16 mg/kg, 16 μg/kg, or 16 ng/kg), E2 daily and interrupted P4 given every other day, daily P4, or daily vehicle control. A separate group of animals received allopregnanolone (0.16 mg/kg) instead of P4. Allodynia was reassessed 1 h following injections. Here, we report that CFA-evoked mechanical allodynia was attenuated following ovariectomy and daily high E2 treatment triggered the return of allodynia, which was rapidly attenuated when P4 was also administered either daily or every other day. Allopregnanolone treatment, whether daily or every other day, also attenuated estrogen-exacerbated allodynia within 1 h of treatment, but only on the first treatment day. These data indicate that when gonadal hormone levels have diminished, treatment with a lower dose of progesterone may be effective at rapidly reducing the estrogen-evoked recurrence of inflammatory mechanical allodynia in the TMJ.

Learn More >

Functional Selectivity and Antinociceptive Effects of a Novel KOPr Agonist.

Kappa opioid receptor (KOPr) agonists represent alternative analgesics for their low abuse potential, although relevant adverse effects have limited their clinical use. Functionally selective KOPr agonists may activate, in a pathway-specific manner, G protein-mediated signaling, that produces antinociception, over β-arrestin 2-dependent induction of p38MAPK, which preferentially contributes to adverse effects. Thus, functionally selective KOPr agonists biased toward G protein-coupled intracellular signaling over β-arrestin-2-mediated pathways may be considered candidate therapeutics possibly devoid of many of the typical adverse effects elicited by classic KOPr agonists. Nonetheless, the potential utility of functionally selective agonists at opioid receptors is still highly debated; therefore, further studies are necessary to fully understand whether it will be possible to develop more effective and safer analgesics by exploiting functional selectivity at KOPr. In the present study we investigated functional selectivity and antinociceptive effects of LOR17, a novel KOPr selective peptidic agonist that we synthesized. LOR17-mediated effects on adenylyl cyclase inhibition, ERK1/2, p38MAPK phosphorylation, and astrocyte cell proliferation were studied in HEK-293 cells expressing hKOPr, U87-MG glioblastoma cells, and primary human astrocytes; biased agonism was investigated cAMP ELISA and β-arrestin 2 recruitment assays. Antinociception and antihypersensitivity were assessed in mice warm-water tail-withdrawal test, intraperitoneal acid-induced writhing, and a model of oxaliplatin-induced neuropathic cold hypersensitivity. Effects of LOR17 on locomotor activity, exploratory activity, and forced-swim behavior were also assayed. We found that LOR17 is a selective, G protein biased KOPr agonist that inhibits adenylyl cyclase and activates early-phase ERK1/2 phosphorylation. Conversely to classic KOPr agonists as U50,488, LOR17 neither induces p38MAPK phosphorylation nor increases KOPr-dependent, p38MAPK-mediated cell proliferation in astrocytes. Moreover, LOR17 counteracts, in a concentration-dependent manner, U50,488-induced p38MAPK phosphorylation and astrocyte cell proliferation. Both U50,488 and LOR17 display potent antinociception in models of acute nociception, whereas LOR17 counteracts oxaliplatin-induced thermal hypersensitivity better than U50,488, and it is effective after single or repeated s.c. administration. LOR17 administered at a dose that fully alleviated oxaliplatin-induced thermal hypersensitivity did not alter motor coordination, locomotor and exploratory activities nor induced pro-depressant-like behavior. LOR17, therefore, may emerge as a novel KOPr agonist displaying functional selectivity toward G protein signaling and eliciting antinociceptive/antihypersensitivity effects in different animal models, including oxaliplatin-induced neuropathy.

Learn More >

Targeting aurora kinase B alleviates spinal microgliosis and neuropathic pain in a rat model of peripheral nerve injury.

Peripheral nerve injury elicits spinal microgliosis, contributing to neuropathic pain. The aurora kinases A (AURKA), B (AURKB), and C (AURKC) are potential therapeutic targets in proliferating cells. However, their role has not been clarified in microglia. The aim of this study was to examine the regulation of aurora kinases and their roles and druggability in spinal microgliosis and neuropathic pain. Sprague-Dawley rats received chronic constriction injury (CCI). Gene expression of aurora kinases A-C was evaluated by quantitative RT-PCR and western blot, respectively, in spinal cords at 1, 3, 7, and 14 d after CCI. AURKB gene and protein expression was up-regulated concomitantly with the development of spinal microgliosis and neuropathic pain. Using lentiviral overexpression and adeno-associated viral knockdown approaches, the function of AURKB was further investigated by western blot, immunohistochemistry, RNA sequencing and pain behavior tests. We found that AURKB overexpression in naive rats caused spinal microgliosis and pain hypersensitivity, whereas AURKB knockdown reduced microgliosis and alleviated CCI-induced neuropathic pain. Accordingly, RNA sequencing data revealed down-regulation of genes critically involved in signaling pathways associated with spinal microgliosis and neuropathic pain after AURKB knockdown in CCI rats. To examine its therapeutic potential for treatment of neuropathic pain, animals were treated intrathecally with the pharmacological AURKB inhibitor AZD1152-HQPA resulting in the alleviation of CCI-induced pain. Taken together, our findings indicated that AURKB plays a critical role in spinal microgliosis and neuropathic pain. Targeting AURKB may be an efficient method for treatment of neuropathic pain subsequent to peripheral nerve injury.

Learn More >

Cannabinoids induce latent sensitization in a preclinical model of medication overuse headache.

Evaluation of cannabinoid receptor agonists in a preclinical model of medication overuse headache.

Learn More >

Search