I am a
Home I AM A Search Login

Animal Studies

Share this

Discovery of Non-pungent Transient Receptor Potential Vanilloid 1 (TRPV1) Agonist as Strong Topical Analgesic.

Paradoxically, some TRPV1 agonists are, at the organismal level, both non-pungent and clinically useful as topical analgesics. Here, we describe the scaled-up synthesis and characterization in mouse models of a novel, non-pungent vanilloid. Potent analgesic ac-tivity was observed in models of neuropathic pain, and the compound blocked capsaicin induced allodynia, showing dermal accu-mulation with little transdermal absorption. Finally, it displayed much weaker systemic toxicity compared to capsaicin and was negative in assays of genotoxicity.

Learn More >

Nerve Injury-Induced Neuronal PAP-I Maintains Neuropathic Pain by Activating Spinal Microglia.

Pancreatitis-associated proteins (PAPs) display multiple functions in visceral diseases. Previous studies showed that the expression level of PAP-I was low in the dorsal root ganglion (DRG) of naïve rats but was expressed after peripheral nerve injury. However, its role in neuropathic pain remains unknown. We found that PAP-I expression was continuously up-regulated in the DRG neurons from rat spared nerve injury (SNI) models, and transported towards the spinal dorsal horn to act as a pro-inflammatory factor. Intrathecal delivery of PAP-I enhanced sensory hyperalgesia, whereas PAP-I deficiency by either gene knockout or antibody application alleviated tactile allodynia at the maintenance phase after SNI. Furthermore, PAP-I functioned by activating the spinal microglia via C-C chemokine receptor type 2 (CCR2) that participated in neuropathic pain. Inhibition of either microglial activation or CCR2 abolished the PAP-I-induced hyperalgesia. Thus, PAP-I mediates the neuron-microglial crosstalk after peripheral nerve injury, and contributes to the maintenance of neuropathic pain.Neuropathic pain is maladaptive pain condition and the maintaining mechanism is largely unclear. Here we reveal that after peripheral nerve injury, PAP-I can be transported to the spinal dorsal horn and is crucial in the progression of neuropathic pain. Importantly, we prove that PAP-I mainly functions through activating the spinal microglia via CCR2-p38 MAPK pathway. Furthermore, we confirm that the pro-inflammatory effect of PAP-I is more prominent after the establishment of neuropathic pain, thus indicating that microglia also participates in the maintenance phase of neuropathic pain.

Learn More >

Cdk5-dependent phosphorylation of Cav3.2 T-type channels: possible role in nerve ligation-induced neuropathic allodynia and the compound action potential in primary afferent C-fibers.

Voltage-gated T-type Ca (Cav3) channels regulate diverse physiological events including neuronal excitability and have been linked to several pathological conditions such as absence epilepsy, cardiovascular diseases, and neuropathic pain. It is also acknowledged that Ca/Calmodulin-dependent protein kinase II (CaMKII) and protein kinases A and C (PKA and PKC) regulate the activity of T-type channels. Interestingly, peripheral nerve injury induces tactile allodynia and up-regulates Cav3.2 channels and Cdk5 in dorsal root ganglia (DRG) and spinal dorsal horn (SDH). Here, we report that recombinant Cav3.2 channels expressed in HEK-293 cells are regulatory targets of cyclin-dependent kinase 5 (Cdk5). Site-directed mutagenesis showed that the relevant sites for this regulation are residues S561 and S1987. We also found that Cdk5 may regulate Cav3.2 channel functional expression in rats with mechanical allodynia induced by spinal nerve ligation (SNL). Consequently, the Cdk5 inhibitor olomoucine affected the compound action potential (cAP) recorded in the spinal nerves, as well as the paw withdrawal threshold. Likewise, Cdk5 expression was upregulated after SNL in the DRGs. These findings unveil a novel mechanism for how phosphorylation may regulate Cav3.2 channels and suggest that increased channel activity by Cdk5-mediated phosphorylation after SNL contributes nerve injury-induced tactile allodynia.Neuropathic pain is a current public health challenge. It can develop as a result of injury or nerve illness. It is acknowledged that the expression of various ion channels can be altered in neuropathic pain, including T-type Ca channels that are expressed in sensory neurons where they play a role in the regulation of cellular excitability. The present work shows that the exacerbated expression of Cdk5 in a preclinical model of neuropathic pain increases the functional expression of Cav3.2 channels. This finding is relevant for the understanding of the molecular pathophysiology of the disease. Additionally, this work may have a substantial translational impact, since it describes a novel molecular pathway that could represent an interesting therapeutic alternative for neuropathic pain.

Learn More >

Sexual dimorphism in cognitive disorders in a murine model of neuropathic pain.

A sex-difference in susceptibility to chronic pain is well-known. Although recent studies have begun to reveal the sex-dependent mechanisms of nerve injury-induced pain sensitization, sex differences in the affective and cognitive brain dysfunctions associated with chronic pain have not been investigated. Therefore, we tested whether chronic pain leads to affective and cognitive disorders in a mouse neuropathic pain model and whether those disorders are sexually dimorphic.

Learn More >

Blockade of IL-33 signalling attenuates osteoarthritis.

Osteoarthritis (OA) is the most common form of arthritis characterised by cartilage degradation, synovitis and pain. Disease modifying treatments for OA are not available. The critical unmet need is to find therapeutic targets to reduce both disease progression and pain. The cytokine IL-33 and its receptor ST2 have been shown to play a role in immune and inflammatory diseases, but their role in osteoarthritis is unknown.

Learn More >

Intravenous Administration of Pyroglutamyl Apelin-13 Alleviates Murine Inflammatory Pain via the Kappa Opioid Receptor.

Apelin is an endogenous neuropeptide, which has wide distribution in central nervous system and peripheral tissues. Pyroglutamyl apelin-13 [(pyr)apelin-13] is the major apelin isoform in human plasma. However, the role of peripheral (pyr)apelin-13 in pain regulation is unknown. The aim of this study was to investigate the effect of the peripheral injection of (pyr)apelin-13 on inflammatory pain using the formalin test as well as to evaluate the mechanistic basis for the effect. Results showed intravenous (i.v.) injection of (pyr)apelin-13 (10, 20 mg/kg) to significantly decrease licking/biting time during the second phase of the mouse formalin test. In contrast, i.v. injection of apelin-13 had no influence on such effect. Intramuscular injection of (pyr)apelin-13 reduced licking/biting time during the second phase only at a dose of 20 mg/kg. The antinociception of i.v. (pyr)apelin-13 was antagonized by the apelin receptor (APJ, angiotensin II receptor-like 1) antagonist, apelin-13(F13A). (pyr)apelin-13 (i.v. 20 mg/kg) markedly upregulated and gene expression in the prefrontal cortex, whereas gene expression was downregulated. The antinociception of i.v. (pyr)apelin-13 was blocked by the opioid receptor antagonist naloxone and the specific kappa opioid receptor (KOR) antagonist nor-binaltorphimine (nor-BNI). (pyr)Apelin-13 upregulated the dynorphin and KOR gene expression and protein levels in the mouse prefrontal cortex, not in striatum. (pyr)Apelin-13 did not influence the motor behavior. Our results demonstrate that i.v. injection of (pyr)apelin-13 induces antinociception via the KOR in the inflammatory pain mouse model.

Learn More >

Antinociceptive effect of selective G protein-gated inwardly rectifying K+ channel agonist ML297 in the rat spinal cord.

The G protein-gated inwardly rectifying K+ (GIRK) channels play important signaling roles in the central and peripheral nervous systems. However, the role of GIRK channel activation in pain signaling remains unknown mainly due to the lack of potent and selective GIRK channel activators until recently. The present study was designed to determine the effects and mechanisms of ML297, a selective GIRK1/2 activator, on nociception in the spinal cord by using behavioral studies and whole-cell patch-clamp recordings from substantia gelatinosa (SG) neurons. Rats were prepared for chronic lumber catheterization and intrathecal administration of ML297. The nociceptive flexion reflex was tested using an analgesy-meter, and the influence on motor performance was assessed using an accelerating rotarod. We also investigated pre- and post-synaptic actions of ML297 in spinal cord preparations by whole-cell patch-clamp recordings. Intrathecal administration of ML297 increased the mechanical nociceptive threshold without impairing motor function. In voltage-clamp mode of patch-clamp recordings, bath application of ML297 induced outward currents in a dose-dependent manner. The ML297-induced currents demonstrated specific equilibrium potential like other families of potassium channels. At high concentration, ML297 depressed miniature excitatory postsynaptic currents (mEPSCs) but not their amplitude. The ML297-induced outward currents and suppression of mEPSCs were not inhibited by naloxone, a μ-opioid receptor antagonist. These results demonstrated that intrathecal ML297 showed the antinociceptive effect, which was mediated through direct activation of pre- and post-synaptic GIRK channels. Selective GIRK channel activation is a promising strategy for the development of new agents against chronic pain and opioid tolerance.

Learn More >

Systematic Immunophenotyping Reveals Sex-Specific Responses After Painful Injury in Mice.

Many diseases display unequal prevalence between sexes. The sex-specific immune response to both injury and persistent pain remains underexplored and would inform treatment paradigms. We utilized high-dimensional mass cytometry to perform a comprehensive analysis of phenotypic and functional immune system differences between male and female mice after orthopedic injury. Multivariate modeling of innate and adaptive immune cell responses after injury using an elastic net algorithm, a regularized regression method, revealed sex-specific divergence at 12 h and 7 days after injury with a stronger immune response to injury in females. At 12 h, females upregulated STAT3 signaling in neutrophils but downregulated STAT1 and STAT6 signals in T regulatory cells, suggesting a lack of engagement of immune suppression pathways by females. Furthermore, at 7 days females upregulated MAPK pathways (p38, ERK, NFkB) in CD4T memory cells, setting up a possible heightened immune memory of painful injury. Taken together, our findings provide the first comprehensive and functional analysis of sex-differences in the immune response to painful injury.

Learn More >

Role of Calcitonin Gene-Related Peptide in Nociceptive Modulation in Anterior Cingulate Cortex of Naïve Rats and Rats With Inflammatory Pain.

It is known that calcitonin gene-related peptide (CGRP) plays a key role in pain modulation in the brain. There are high expressions of CGRP and CGRP receptor in anterior cingulate cortex (ACC), an important brain structure in pain modulation. The present study explored the role and mechanisms of CGRP and CGRP receptor in nociceptive modulation in ACC in naïve rats and inflammatory rats. Administration of different does of CGRP in ACC induced significant antinociception in a dose-dependent manner in both naïve rats and rats with inflammatory pain. The CGRP-induced antinociception was attenuated by injection of the CGRP receptor antagonist CGRP8-37 in ACC. Interestingly, both CGRP-induced antinociception and CGRP receptor expression decreased in ACC in rats with inflammatory pain compared with naïve rats. Knockdown of CGRP receptor in ACC by siRNA targeting to CGRP receptor attenuated both the CGRP receptor expression and the CGRP-induced antinociception significantly in rats. These findings demonstrate that CGRP and CGRP receptor participate in nociceptive modulation in ACC in rats, inhibiting CGRP receptor expression induces decrease in CGRP-induced antinociception in ACC.

Learn More >

Chemogenetic Regulation of CX3CR1-Expressing Microglia Using Gi-DREADD Exerts Sex-Dependent Anti-Allodynic Effects in Mouse Models of Neuropathic Pain.

Despite growing evidence suggesting that spinal microglia play an important role in the molecular mechanism underlying experimental neuropathic pain (NP) in male rodents, evidence regarding the sex-dependent role of these microglia in NP is insufficient. In this study, we evaluated the effects of microglial regulation on NP using Gi-designer receptors exclusively activated by designer drugs (Gi-DREADD) driven by the microglia-specific promoter. For the Cre-dependent expression of human Gi-coupled M4 muscarinic receptors (hM4Di) in CX3C chemokine receptor 1-expressing (CX3CR1) cells, R26-LSL-hM4Di-DREADD mice were crossed with CX3CR1-Cre mice. Mouse models of NP were generated by partial sciatic nerve ligation (PSL) and treatment with anti-cancer agent paclitaxel (PTX) or oxaliplatin (OXA), and mechanical allodynia was evaluated using the von Frey test. Immunohistochemistry revealed that hM4Di was specifically expressed on Iba1 microglia, but not on astrocytes or neurons in the spinal dorsal horn of CX3CR1-hM4Di mice. PSL-induced mechanical allodynia was significantly attenuated by systemic (intraperitoneal, i.p.) administration of 10 mg/kg of clozapine N-oxide (CNO), a hM4Di-selective ligand, in male CX3CR1-hM4Di mice. The mechanical threshold in naive CX3CR1-hM4Di mice was not altered by i.p. administration of CNO. Consistently, local (intrathecal, i.t.) administration of CNO (20 nmol) significantly relieved PSL-induced mechanical allodynia in male CX3CR1-hM4Di mice. However, neither i.p. nor i.t. administration of CNO affected PSL-induced mechanical allodynia in female CX3CR1-hM4Di mice. Both i.p. and i.t. administration of CNO relieved PTX-induced mechanical allodynia in male CX3CR1-hM4Di mice, and a limited effect of i.p. CNO was observed in female CX3CR1-hM4Di mice. Unlike PTX-induced allodynia, OXA-induced mechanical allodynia was slightly improved, but not significantly relieved, by i.p. administration of CNO in both male and female CX3CR1-hM4Di mice. These results suggest that spinal microglia can be regulated by Gi-DREADD and support the notion that CX3CR1 spinal microglia play sex-dependent roles in nerve injury-induced NP; however, their roles may vary among different models of NP.

Learn More >

Search