I am a
Home I AM A Search Login

Animal Studies

Share this

Environmental enrichment prevents chronic stress-induced brain-gut axis dysfunction through a GR-mediated mechanism in the central nucleus of the amygdala.

Cognitive behavioral therapy (CBT) improves quality of life of patients with irritable bowel syndrome (IBS), a disorder characterized by chronic visceral pain and abnormal bowel habits. Whether CBT can actually improve visceral pain in IBS patients is still unknown. The aim of this study is to evaluate whether environment enrichment (EE), the animal analog of CBT, can prevent stress-induced viscero-somatic hypersensitivity through changes in glucocorticoid receptor (GR) signaling within the central nucleus of the amygdala (CeA).

Learn More >

Enhanced post-traumatic headache-like behaviors and diminished contribution of peripheral CGRP in female rats following a mild closed head injury.

Females are thought to have increased risk of developing post-traumatic headache following a traumatic head injury or concussion. However, the processes underlying this susceptibility remain unclear. We previously demonstrated the development of post-traumatic headache-like pain behaviors in a male rat model of mild closed head injury, along with the ability of sumatriptan and an anti-calcitonin-gene-related peptide monoclonal antibody to ameliorate these behaviors. Here, we conducted a follow-up study to explore the development of post-traumatic headache-like behaviors and the effectiveness of these headache therapies in females subjected to the same head trauma protocol.

Learn More >

Spinal Hevin Mediates Membrane Trafficking of GluA1-containing AMPA Receptors in Remifentanil-induced Postoperative Hyperalgesia in Mice.

Hevin, a matricellular protein involved in tissue repair and remodeling, is crucial for initiation and development of excitatory synapses. Besides, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) is an ionotropic transmembrane receptor for glutamate that mediates fast synaptic transmission in the central nervous system (CNS). This study aimed to investigate the correlation between spinal Hevin and AMPA receptors in remifentanil-induced postoperative hyperalgesia in mice.

Learn More >

A Nonpeptide Oxytocin Receptor Agonist for a Durable Relief of Inflammatory Pain.

Oxytocin possesses several physiological and social functions, among which an important analgesic effect. For this purpose, oxytocin binds mainly to its unique receptor, both in the central nervous system and in the peripheral nociceptive terminal axon in the skin. However, despite its interesting analgesic properties and its current use in clinics to facilitate labor, oxytocin is not used in pain treatment. Indeed, it is rapidly metabolized, with a half-life in the blood circulation estimated at five minutes and in cerebrospinal fluid around twenty minutes in humans and rats. Moreover, oxytocin itself suffers from several additional drawbacks: a lack of specificity, an extremely poor oral absorption and distribution, and finally, a lack of patentability. Recently, a first non-peptide full agonist of oxytocin receptor (LIT-001) of low molecular weight has been synthesized with reported beneficial effect for social interactions after peripheral administration. In the present study, we report that a single intraperitoneal administration of LIT-001 in a rat model induces a long-lasting reduction in inflammatory pain-induced hyperalgesia symptoms, paving the way to an original drug development strategy for pain treatment.

Learn More >

The fibroblast-derived protein PI16 controls neuropathic pain.

Chronic pain is a major clinical problem of which the mechanisms are incompletely understood. Here, we describe the concept that PI16, a protein of unknown function mainly produced by fibroblasts, controls neuropathic pain. The spared nerve injury (SNI) model of neuropathic pain increases PI16 protein levels in fibroblasts in dorsal root ganglia (DRG) meninges and in the epi/perineurium of the sciatic nerve. We did not detect PI16 expression in neurons or glia in spinal cord, DRG, and nerve. Mice deficient in PI16 are protected against neuropathic pain. In vitro, PI16 promotes transendothelial leukocyte migration. In vivo, mice show reduced endothelial barrier permeability, lower leukocyte infiltration and reduced activation of the endothelial barrier regulator MLCK, and reduced phosphorylation of its substrate MLC2 in response to SNI. In summary, our findings support a model in which PI16 promotes neuropathic pain by mediating a cross-talk between fibroblasts and the endothelial barrier leading to barrier opening, cellular influx, and increased pain. Its key role in neuropathic pain and its limited cellular and tissue distribution makes PI16 an attractive target for pain management.

Learn More >

An integrative approach to the facile functional classification of dorsal root ganglion neuronal subclasses.

Somatosensory neurons have historically been classified by a variety of approaches, including structural, anatomical, and genetic markers; electrophysiological properties; pharmacological sensitivities; and more recently, transcriptional profile differentiation. These methodologies, used separately, have yielded inconsistent classification schemes. Here, we describe phenotypic differences in response to pharmacological agents as measured by changes in cytosolic calcium concentration for the rapid classification of neurons in vitro; further analysis with genetic markers, whole-cell recordings, and single-cell transcriptomics validated these findings in a functional context. Using this general approach, which we refer to as tripartite constellation analysis (TCA), we focused on large-diameter dorsal-root ganglion (L-DRG) neurons with myelinated axons. Divergent responses to the K-channel antagonist, κM-conopeptide RIIIJ (RIIIJ), reliably identified six discrete functional cell classes. In two neuronal subclasses (L1 and L2), block with RIIIJ led to an increase in [Ca] Simultaneous electrophysiology and calcium imaging showed that the RIIIJ-elicited increase in [Ca] corresponded to different patterns of action potentials (APs), a train of APs in L1 neurons, and sporadic firing in L2 neurons. Genetically labeled mice established that L1 neurons are proprioceptors. The single-cell transcriptomes of L1 and L2 neurons showed that L2 neurons are Aδ-low-threshold mechanoreceptors. RIIIJ effects were replicated by application of the K1.1 selective antagonist, Dendrotoxin-K, in several L-DRG subclasses (L1, L2, L3, and L5), suggesting the presence of functional K1.1/K1.2 heteromeric channels. Using this approach on other neuronal subclasses should ultimately accelerate the comprehensive classification and characterization of individual somatosensory neuronal subclasses within a mixed population.

Learn More >

Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system.

Drug-evoked adaptations in the mesolimbic dopamine system are postulated to drive opioid abuse and addiction. These adaptations vary in magnitude and direction following different patterns of opioid exposure, but few studies have systematically manipulated the pattern of opioid administration while measuring neurobiological and behavioral impact. We exposed male and female mice to morphine for one week, with administration patterns that were either intermittent (daily injections) or continuous (osmotic minipump infusion). We then interrupted continuous morphine exposure with either naloxone-precipitated or spontaneous withdrawal. Continuous morphine exposure caused tolerance to the psychomotor-activating effects of morphine, whereas both intermittent and interrupted morphine exposure caused long-lasting psychomotor sensitization. Given links between locomotor sensitization and mesolimbic dopamine signaling, we used fiber photometry and a genetically encoded dopamine sensor to conduct longitudinal measurements of dopamine dynamics in the nucleus accumbens. Locomotor sensitization caused by interrupted morphine exposure was accompanied by enhanced dopamine signaling in the nucleus accumbens. To further assess downstream consequences on striatal gene expression, we used next-generation RNA sequencing to perform genome-wide transcriptional profiling in the nucleus accumbens and dorsal striatum. The interruption of continuous morphine exposure exacerbated drug-evoked transcriptional changes in both nucleus accumbens and dorsal striatum, dramatically increasing differential gene expression and engaging unique signaling pathways. Our study indicates that opioid-evoked adaptations in brain function and behavior are critically dependent on the pattern of drug administration, and exacerbated by interruption of continuous exposure. Maintaining continuity of chronic opioid administration may, therefore, represent a strategy to minimize iatrogenic effects on brain reward circuits.

Learn More >

Anti-PD-1 treatment impairs opioid antinociception in rodents and nonhuman primates.

Emerging immunotherapies with monoclonal antibodies against programmed cell death protein-1 (PD-1) have shown success in treating cancers. However, PD-1 signaling in neurons is largely unknown. We recently reported that dorsal root ganglion (DRG) primary sensory neurons express PD-1 and activation of PD-1 inhibits neuronal excitability and pain. Opioids are mainstay treatments for cancer pain, and morphine produces antinociception via mu opioid receptor (MOR). Here, we report that morphine antinociception and MOR signaling require neuronal PD-1. Morphine-induced antinociception after systemic or intrathecal injection was compromised in mice. Morphine antinociception was also diminished in wild-type mice after intravenous or intrathecal administration of nivolumab, a clinically used anti-PD-1 monoclonal antibody. In mouse models of inflammatory, neuropathic, and cancer pain, spinal morphine antinociception was compromised in mice. MOR and PD-1 are coexpressed in sensory neurons and their axons in mouse and human DRG tissues. Morphine produced antinociception by (i) suppressing calcium currents in DRG neurons, (ii) suppressing excitatory synaptic transmission, and (iii) inducing outward currents in spinal cord neurons; all of these actions were impaired by PD-1 blockade in mice. Loss of PD-1 also enhanced opioid-induced hyperalgesia and tolerance and potentiates opioid-induced microgliosis and long-term potentiation in the spinal cord in mice. Last, intrathecal infusion of nivolumab inhibited intrathecal morphine-induced antinociception in nonhuman primates. Our findings demonstrate that PD-1 regulates opioid receptor signaling in nociceptive neurons, leading to altered opioid-induced antinociception in rodents and nonhuman primates.

Learn More >

A novel approach for detection of functional expression of TRPV1 channels on regenerated neurons following nerve injury.

Transient receptor potential vanilloid 1 (TRPV1) is a polymodal receptor channel, which plays an important role in pain transduction. It is important to understand the functional expression of this channel under neuropathic pain (NP) conditions. A novel method was used to investigate the dynamics of functional expression of this channel on regenerated neurons under NP conditions following trigeminal nerve injury using a combination of a permanently charged sodium channel blocker (QX-314) and a TRPV1 agonist (capsaicin; QX-CAP). The combination was originally introduced as a local anesthetic. Synchronization between the local anesthetic effect of QX-CAP and TRPV1 expression on regenerated neurons was observed following the nerve injury. QX-CAP had no local anesthetic effect under NP conditions 2 weeks after the injury when TRPV1 expression on regenerated neurons was low. However, this combination was effective under NP conditions 3 and 4 weeks following injury when TRPV1 expression in regenerated neurons was moderate to high. The current review, discusses the potential of QX-314 as a local anesthetic and a novel approach of using QX-CAP to reveal the dynamics of functional expression of TRPV1 on regenerated neurons following trigeminal nerve injury.

Learn More >

Dexmedetomidine modulates transient receptor potential vanilloid subtype 1.

Dexmedetomidine, a highly selective alpha-2 adrenergic receptor agonist and novel sedative drug with minimal respiratory suppression, have shown anti-nociceptive activity in various pain models by poorly understood mechanisms. Because alpha-2 adrenergic receptor is co-localized with TRPV1 polymodal nociceptive receptor in dorsal root ganglion neurons and up-regulated in neuropathic pain animal models, the analgesic activity might be mediated through inhibition of TRPV1 in the peripheral nervous system. In an effort to elucidate whether modulatory effect of dexmedetomidine on TRPV1 activity could be the potential peripheral mechanism underlying the antinociceptive effect of dexmedetomidine, intracellular calcium concentration after capsaicin application was investigated in mice dorsal root ganglion (DRG) neurons, with and without pretreatment of dexmedetomidine. Dexmedetomidine (10 μM) reduced capsaicin-induced calcium responses by 29.7 ± 7.39% (n = 34, p < 0.0001), in dose-dependent manner. Higher level of inhibition was observed with increased dose of dexmedetomidine (50 μM, 45.1 ± 8.58%, n = 15, p = 0.0002), and lower inhibition by decreased dose (1 μM, 18.8 ± 1.48%, n = 148, p = 0.004). RT-PCR analysis revealed expression of TRPV1 and alpha-2A, alpha-2B and alpha-2C subtypes of adrenergic receptor in mice DRG neurons, and immunocytochemical analysis revealed co-expression of TRPV1 and alpha-2A receptors in primary cultured DRG neurons. In summary, these results suggested the inhibition of TRPV1 expressed in the primary sensory neurons as a potential mechanism that contributes to the anti-nociceptive action of dexmedetomidine.

Learn More >

Search