I am a
Home I AM A Search Login

Animal Studies

Share this

Non-conventional Axonal Organelles Control TRPM8 Ion Channel Trafficking and Peripheral Cold Sensing.

TRPM8 is the main ion channel responsible for cold transduction in the somatosensory system. Nerve terminal availability of TRPM8 determines cold sensitivity, but how axonal secretory organelles control channel delivery remains poorly understood. Here we examine the distribution of TRPM8 and trafficking organelles in cold-sensitive peripheral axons and disrupt trafficking by targeting the ARF-GEF GBF1 pharmacologically or the small GTPase RAB6 by optogenetics. In axons of the sciatic nerve, inhibition of GBF1 interrupts TRPM8 trafficking and increases association with the trans-Golgi network, LAMP1, and Golgi satellites, which distribute profusely along the axonal shaft. Accordingly, both TRPM8-dependent ongoing activity and cold-evoked responses reversibly decline upon GBF1 inhibition in nerve endings of corneal cold thermoreceptors. Inhibition of RAB6, which also associates to Golgi satellites, decreases cold-induced responses in vivo. Our results support a non-conventional axonal trafficking mechanism controlling the availability of TRPM8 in axons and cold sensitivity in the peripheral nervous system.

Learn More >

S100A9 plays a pivotal role in a mouse model of herpetic neuralgia via TLR4/TNF pathway.

Herpetic neuralgia is a painful condition following herpes zoster disease, which results from Varicella-zoster virus reactivation in the dorsal or trigeminal sensory ganglia. Nevertheless, the pathophysiological mechanisms involved in herpetic neuralgia are not well understood. Recently, we identified, that neuroimmune-glia interactions in the sensory ganglion is a critical mechanism for the development of herpetic neuralgia. Here, we investigate the contribution of S100A9, a well-known pro-inflammatory molecule produced by myeloid cells, for the development of herpetic neuralgia using a murine model of HSV-1 infection. We found that cutaneous HSV-1 infection results in an increase of S100A9 expression in the Dorsal Root Ganglia (DRGs). Infiltrating neutrophils into the DRGs were the main source of S100A9 post HSV-1 infection. Functionally, genetic or pharmacological inhibition of S100A9 impairs the development of HSV-1 infection-induced mechanical pain hypersensitivity. Finally, we found that the pronociceptive role of S100A9 in herpetic neuralgia depends on the TLR4/TNF pathway. These results unraveled previously unknown mechanisms involved in the pathophysiology of herpetic neuralgia and indicate that S100A9 might be an important target for novel therapies aiming acute herpetic neuralgia.

Learn More >

Astrocytes in Atp1a2-deficient heterozygous mice exhibit hyperactivity after induction of cortical spreading depression.

The ATP1A2 coding α2 subunit of Na,K-ATPase, which is predominantly located in astrocytes, is a causative gene of familial hemiplegic migraine type 2 (FHM2). FHM2 model mice (Atp1a2 ) are susceptible to cortical spreading depression (CSD), which is profoundly related to migraine aura and headache. However, astrocytic properties during CSD have not been examined in FHM2 model mice. Using Atp1a2 crossed with transgenic mice expressing G-CaMP7 in cortical neurons and astrocytes (Atp1a2 ), we analyzed the changes in Ca concentrations during CSD. The propagation speed of Ca waves and the percentages of astrocytes with elevated Ca concentrations in Atp1a2 were higher than those in wild-type mice. Increased percentages of astrocytes with elevated Ca concentrations in Atp1a2 may contribute to FHM2 pathophysiology.

Learn More >

Cryo-EM structures of the ATP release channel pannexin 1.

The plasma membrane adenosine triphosphate (ATP) release channel pannexin 1 (PANX1) has been implicated in many physiological and pathophysiological processes associated with purinergic signaling, including cancer progression, apoptotic cell clearance, inflammation, blood pressure regulation, oocyte development, epilepsy and neuropathic pain. Here we present near-atomic-resolution structures of human and frog PANX1 determined by cryo-electron microscopy that revealed a heptameric channel architecture. Compatible with ATP permeation, the transmembrane pore and cytoplasmic vestibule were exceptionally wide. An extracellular tryptophan ring located at the outer pore created a constriction site, potentially functioning as a molecular sieve that restricts the size of permeable substrates. The amino and carboxyl termini, not resolved in the density map, appeared to be structurally dynamic and might contribute to narrowing of the pore during channel gating. In combination with functional characterization, this work elucidates the previously unknown architecture of pannexin channels and establishes a foundation for understanding their unique channel properties.

Learn More >

Suppression of Superficial Microglial Activation by Spinal Cord Stimulation Attenuates Neuropathic Pain Following Sciatic Nerve Injury in Rats.

We evaluated the mechanisms underlying the spinal cord stimulation (SCS)-induced analgesic effect on neuropathic pain following spared nerve injury (SNI). On day 3 after SNI, SCS was performed for 6 h by using electrodes paraspinally placed on the L4-S1 spinal cord. The effects of SCS and intraperitoneal minocycline administration on plantar mechanical sensitivity, microglial activation, and neuronal excitability in the L4 dorsal horn were assessed on day 3 after SNI. The somatosensory cortical responses to electrical stimulation of the hind paw on day 3 following SNI were examined by using in vivo optical imaging with a voltage-sensitive dye. On day 3 after SNI, plantar mechanical hypersensitivity and enhanced microglial activation were suppressed by minocycline or SCS, and L4 dorsal horn nociceptive neuronal hyperexcitability was suppressed by SCS. In vivo optical imaging also revealed that electrical stimulation of the hind paw-activated areas in the somatosensory cortex was decreased by SCS. The present findings suggest that SCS could suppress plantar SNI-induced neuropathic pain via inhibition of microglial activation in the L4 dorsal horn, which is involved in spinal neuronal hyperexcitability. SCS is likely to be a potential alternative and complementary medicine therapy to alleviate neuropathic pain following nerve injury.

Learn More >

Local Sympathectomy Promotes Antiinflammatory Responses and Relief of Paclitaxel-induced Mechanical and Cold Allodynia in Mice.

Patients undergoing cancer treatment often experience chemotherapy-induced neuropathic pain at their extremities, for which there is no U.S. Food and Drug Administration-approved drug. The authors hypothesized that local sympathetic blockade, which is used in the clinic to treat various pain conditions, can also be effective to treat chemotherapy-induced neuropathic pain.

Learn More >

No central action of CGRP antagonising drugs in the GTN mouse model of migraine.

Learn More >

Antinociceptive Effects of Potent, Selective and Brain Penetrant Muscarinic M Positive Allosteric Modulators in Rodent Pain Models.

Analgesic properties of orthosteric agonists of the muscarinic M receptor subtype have been documented in literature reports, with evidence from pharmacological and in vivo receptor knock out (KO) studies. Constitutive M receptor KO mice demonstrated an increased response in the formalin pain model, supporting this hypothesis. Two novel positive allosteric modulators (PAM) of the M receptor, Compounds 1 and 2, were characterized in rodent models of acute nociception. Results indicated decreased time spent on nociceptive behaviors in the mouse formalin model, and efficacy in the mouse tail flick assay. The analgesic-like effects of Compounds 1 and 2 were shown to be on target, as the compounds lacked any activity in constitutive M KO mice, while retaining activity in wild type control littermates. The analgesic-like effects of Compounds 1 and 2 were significantly diminished in KO mice that have selective deletion of the M receptor in neurons that co-express the dopaminergic D receptor subtype, suggesting a centrally-mediated effect on nociception. The opioid antagonist naloxone did not diminish the effect of Compound 1, indicating the effects of Compound 1 are not secondarily linked to opioid pathways. Compound 1 was evaluated in the rat, where it demonstrated analgesic-like effects in tail flick and a subpopulation of spinal nociceptive sensitive neurons, suggesting some involvement of spinal mechanisms of nociceptive modulation. These studies indicate that M PAMs may be a tractable target for pain management assuming an appropriate safety profile, and it appears likely that both spinal and supraspinal pathways may mediate the antinociceptive-like effects.

Learn More >

Molecular signature of pruriceptive MrgprA3 neurons.

Itch, initiated by the activation of sensory neurons, is frequently associated with dermatological diseases. MrgprA3 sensory neurons have been identified as one of the major itch-sensing neuronal populations. Mounting evidence has demonstrated that peripheral pathological conditions induce physiological regulations of sensory neurons, which is critical for the maintenance of chronic itch sensation. However, the underlying molecular mechanisms are not clear. Here we performed RNA sequencing of genetically labeled MrgprA3 neurons under both naïve and allergic contact dermatitis conditions. Our results revealed the unique molecular signature of itch-sensing neurons and the distinct transcriptional profile changes that result in response to dermatitis. We found enrichment of nine Mrgpr family members and two histamine receptors in MrgprA3 neurons, suggesting that MrgprA3 neurons are a direct neuronal target for histamine and Mrgprs agonists. In addition, Ptpn6 and Pcdh12 were identified as highly selective markers of MrgprA3 neurons. We also discovered that MrgprA3 neurons respond to skin dermatitis in a way that is unique from other sensory neurons by regulating a combination of transcriptional factors, ion channels, and key molecules involved in synaptic transmission. These results significantly increase our knowledge of itch transmission and uncover potential targets for combating itch.

Learn More >

Bradykinin Receptors Play a Critical Role in the Chronic Post-ischaemia Pain Model.

Complex regional pain syndrome type-I (CRPS-I) is a chronic painful condition resulting from trauma. Bradykinin (BK) is an important inflammatory mediator required in acute and chronic pain response. The objective of this study was to evaluate the association between BK receptors (B and B) and chronic post-ischaemia pain (CPIP) development in mice, a widely accepted CRPS-I model. We assessed mechanical and cold allodynia, and paw oedema in male and female Swiss mice exposed to the CPIP model. Upon induction, the animals were treated with BKR antagonists (HOE-140 and DALBK); BKR agonists (Tyr-BK and DABK); antisense oligonucleotides targeting B and B and captopril by different routes in the model (7, 14 and 21 days post-induction). Here, we demonstrated that treatment with BKR antagonists, by intraperitoneal (i.p.), intraplantar (i.pl.), and intrathecal (i.t.) routes, mitigated CPIP-induced mechanical allodynia and oedematogenic response, but not cold allodynia. On the other hand, i.pl. administration of BKR agonists exacerbated pain response. Moreover, a single treatment with captopril significantly reversed the anti-allodynic effect of BKR antagonists. In turn, the inhibition of BKRs gene expression in the spinal cord inhibited the nociceptive behaviour in the 14th post-induction. The results of the present study suggest the participation of BKRs in the development and maintenance of chronic pain associated with the CPIP model, possibly linking them to CRPS-I pathogenesis.

Learn More >

Search