I am a
Home I AM A Search Login

Animal Studies

Share this

Astrocyte dysfunction increases cortical dendritic excitability and promotes cranial pain in familial migraine.

Astrocytes are essential contributors to neuronal function. As a consequence, disturbed astrocyte-neuron interactions are involved in the pathophysiology of several neurological disorders, with a strong impact on brain circuits and behavior. Here, we describe altered cortical physiology in a genetic mouse model of familial hemiplegic migraine type 2 (FHM2), with reduced expression of astrocytic Na,K-ATPases. We used whole-cell electrophysiology, two-photon microscopy, and astrocyte gene rescue to demonstrate that an impairment in astrocytic glutamate uptake promotes NMDA spike generation in dendrites of cingulate cortex pyramidal neurons and enhances output firing of these neurons. Astrocyte compensation of the defective ATPase in the cingulate cortex rescued glutamate uptake, prevented abnormal NMDA spikes, and reduced sensitivity to cranial pain triggers. Together, our results demonstrate that impaired astrocyte function alters neuronal activity in the cingulate cortex and facilitates migraine-like cranial pain states in a mouse model of migraine.

Learn More >

Local Sympathectomy Promotes Anti-inflammatory Responses and Relief of Paclitaxel-induced Mechanical and Cold Allodynia in Mice.

Patients undergoing cancer treatment often experience chemotherapy-induced neuropathic pain at their extremities, for which there is no U.S. Food and Drug Administration-approved drug. The authors hypothesized that local sympathetic blockade, which is used in the clinic to treat various pain conditions, can also be effective to treat chemotherapy-induced neuropathic pain.

Learn More >

Long-term histological analysis of innervation & macrophage infiltration in a mouse model of intervertebral disc injury-induced low back pain.

Low back pain (LBP) is a leading cause of global disability. Multiple anatomical, cellular and molecular factors implicated in LBP, including degeneration of lumbar intervertebral discs (IVDs). We previously described a mouse model that displays behavioral symptoms of chronic LBP. Here we investigated the development of pathological innervation and macrophage infiltration into injured IVDs following a puncture injury in mice over 12 months. 2-month old CD1 female mice underwent a single puncture of the ventral L4/5 IVD using a 30G needle, and were sacrificed 4 days and 0.5-, 3-, 6- and 12-months post-injury. Severity of disc degeneration was assessed using colorimetric staining. IVD innervation was measured by PGP9.5-immunoreactivity (-ir) and calcitonin gene-related peptide-ir (CGRP-ir). Macrophage accumulation into IVDs was detected by F4/80-ir. Mechanical IVD injury resulted in severe degeneration and increased PGP9.5-ir nerve fiber density starting at 4 days that persisted for up to 12 months and dorsal herniations began to occur at 3 months. CGRP-ir was also upregulated in injured IVDs, with the largest increase at 12 months post-injury. Infiltration of F4/80-ir macrophages was observed in injured IVDs by day 4 both dorsally and ventrally, with the latter diminishing in the later stage. Persistent LBP is a complex disease with multiple underlying pathologies. By highlighting pathological changes in IVD innervation and inflammation, our study suggests that strategies targeting these mechanisms might be useful therapeutically. This article is protected by copyright. All rights reserved.

Learn More >

Hippocampal oscillatory dynamics and sleep atonia are altered in an animal model of fibromyalgia: implications in the search for biomarkers.

The pathogenesis of fibromyalgia is still unknown. Core symptoms include pain, depression and sleep disturbances with high comorbidity, suggesting alterations in the monoaminergic system as a common origin of this disease. The reserpine-induced myalgia model (RIM) lowers pain thresholds and produces depressive-like symptoms. The present work aims to evaluate temporal dynamics in the oscillatory profiles and motor activity during sleep in this model and to evaluate if the model mimics the sleep disorders that occur in fibromyalgia patients. Hippocampal and EMG activity were recorded in chronically implanted rats. Following 3 days of basal recordings, reserpine was administered on 3 consecutive days to achieve the RIM. Post-reserpine recordings were taken on alternate days for 21 days. Reserpine induced changes in the sleep architecture with more transitions between states, and a different pattern between the administration period and post-reserpine weeks. Administration days were characterized by a larger amount of REM sleep with dominant theta waves without atonia. Following the reserpinization, theta oscillations were always more fragmented and with lower frequency. On the post-reserpine days, sleep was dominated by slow-wave sleep with fast intrusions and reduced hierarchical coupling with spindles and ripples. Simultaneous electromyography recordings also showed muscle twitches during sleep and the dissociation of theta activity and muscle atonia. Abnormally high slow waves, alpha/delta intrusions, frequent transitions and muscle twitches are common traits in fibromyalgia. Therefore, our analyses support the validity of the reserpine-induced myalgia model to study sleep disorders in fibromyalgia, and provide new insights into the research of oscillographic biomarkers. This article is protected by copyright. All rights reserved.

Learn More >

Pharmacological characterization of a rat Nav1.7 loss-of-function model with insensitivity to pain.

Sodium channel Nav1.7, encoded by the SCN9A gene, is a well-validated target that plays a key role in controlling pain sensation. Loss-of-function mutations of Nav1.7 can cause a syndrome of profound congenital insensitivity to pain in humans. Better understanding of how the loss of Nav1.7 leads to loss of pain sensibility would help to decipher the fundamental mechanisms of nociception and inform strategies for development of novel analgesics. Using a recently described rat Nav1.7 loss-of-function model with deficient nociception but intact olfactory function, we investigated the involvement of endogenous opioid and cannabinoid systems in this rodent model of Nav1.7-related congenital insensitivity to pain. We found that both the opioid receptor antagonist naloxone and cannabinoid receptor blockers SR141716A (rimonabant) and SR144528 fail to restore acute pain sensitivity in Nav1.7 loss-of-function rats. We observed, however, that after rimonabant administration, Nav1.7 loss-of-function but not WT rats displayed abnormal behaviours, such as enhanced scratching, caudal self-biting, and altered facial expressions; the underlying mechanism is still unclear. Dorsal root ganglion neurons from Nav1.7 loss-of-function rats, although hypoexcitable compared with WT neurons, were still able to generate action potentials in response to noxious heat and capsaicin. Our data indicate that complete loss of dorsal root ganglion neuron excitability is not required for insensitivity to pain and suggest that endogenous opioid and cannabinoid systems are not required for insensitivity to pain in the absence of Nav1.7 channels in this rat Nav1.7 loss-of-function model.

Learn More >

Contribution of intraganglionic CGRP to migraine-like responses in male and female rats.

To evaluate whether intraganglionic calcitonin gene-related peptide induced differential migraine-like responses in male and female rats.

Learn More >

Orally consumed cannabinoids provide long-lasting relief of allodynia in a mouse model of chronic neuropathic pain.

Chronic pain affects a significant percentage of the United States population, and available pain medications like opioids have drawbacks that make long-term use untenable. Cannabinoids show promise in the management of pain, but long-term treatment of pain with cannabinoids has been challenging to implement in preclinical models. We developed a voluntary, gelatin oral self-administration paradigm that allowed male and female mice to consume ∆-tetrahydrocannabinol, cannabidiol, or morphine ad libitum. Mice stably consumed these gelatins over 3 weeks, with detectable serum levels. Using a real-time gelatin measurement system, we observed that mice consumed gelatin throughout the light and dark cycles, with animals consuming less THC-gelatin than the other gelatin groups. Consumption of all three gelatins reduced measures of allodynia in a chronic, neuropathic sciatic nerve injury model, but tolerance to morphine developed after 1 week while THC or CBD reduced allodynia over three weeks. Hyperalgesia gradually developed after sciatic nerve injury, and by the last day of testing, THC significantly reduced hyperalgesia, with a trend effect of CBD, and no effect of morphine. Mouse vocalizations were recorded throughout the experiment, and mice showed a large increase in ultrasonic, broadband clicks after sciatic nerve injury, which was reversed by THC, CBD, and morphine. This study demonstrates that mice voluntarily consume both cannabinoids and opioids via gelatin, and that cannabinoids provide long-term relief of chronic pain states. In addition, ultrasonic clicks may objectively represent mouse pain status and could be integrated into future pain models.

Learn More >

Activation of the RAS/B-RAF-MEK-ERK Pathway in Satellite Glial Cells Contributes to Substance P-mediated Orofacial Pain.

The cross-talk between trigeminal ganglion (TG) neurons and satellite glial cells (SGCs) is crucial for the regulation of inflammatory orofacial pain. Substance P (SP) plays an important role by activating neurokinin (NK)-I receptors in this cross-talk. Activation of extracellular signal-regulated kinase (ERK) 1/2, protein kinase A (PKA) and protein kinase C (PKC) in neurons and SGCs of peripheral ganglions by peripheral inflammation is associated with inflammatory hypersensitivity. This study tested the hypothesis that SP evoked SP-NK-I receptor positive feedback via the Renin Angiotensin System/B-Protein Kinase A-Rapidly Accelerates Fibrosarcoma-MEK-Extracellular Signal-Regulated Kinase (RAS/PKA-RAF-MEK-ERK) pathway, which is involved in pain hypersensitivity.Inflammatory models were induced in vivo by injecting Complete Freund's adjuvant (CFA) into the whisker pad of rats. SP was administrated to SGCs in vitro for investigating whether SP regulates the expression of NK-I receptor in the SGC nucleus. The effects of RAS-RAF-MEK, PKA and PKC pathways in this process were measured by co-incubating SGCs with respective Raf, PKA, PKC, and MEK inhibitors in vitro and by pre-injecting these inhibitors into the TGin vivo. SP significantly upregulated NK-I receptor, p-ERK1/2, Ras, B-Raf, PKA, and PKC in SGCs under inflammatory conditions. In addition, L703,606 (NK-I receptor antagonist), U0126 (MEK inhibitor), Sorafenib (Raf inhibitor) and H892HCL (PKA inhibitor) but not Chelerythrine chloride (PKC inhibitor) significantly decreased NK-I mRNA and protein levels induced by SP. The allodynia-related behavior evoked by CFA was inhibited by pre-injection of L703,606, U0126, Sorafenib and H892HCL into the TG. Overall, SP upregulates NK-I receptor in TG SGCs via PKA/RAS-RAF-MEK-ERK pathway activation, contributing to a positive feedback of SP-NK-I receptor in inflammatory orofacial pain.

Learn More >

Regulation of pain by neuro-immune interactions between macrophages and nociceptor sensory neurons.

Inflammation is the body's protective reaction to injury and infection. Pain is a hallmark of inflammation and can be either protective or detrimental during acute or chronic phase. Macrophages play a chief role in the pathogenesis of pain and have bilateral communications with nociceptors, the specialized primary sensory neurons that sense pain. Macrophages 'talk to' nociceptors by releasing pro-inflammatory mediators (e.g. pro-inflammatory cytokines) that induce pain via direct activation of nociceptors. Macrophages also 'listen to' nociceptors, by which nociceptors secrete neuropeptides and chemokines which act on macrophages. Activation of toll-like receptors (TLRs) in nociceptors releases CCL2, activating macrophages and potentiating pathological pain. Emerging evidence also points to a pro-resolution role of macrophages in inflammation and pain. Macrophage GPR37 is activated by neuroprotectin D1, a specialized pro-resolving mediator (SPM) and resolves inflammatory pain via phagocytosis and production of IL-10 that inhibits nociceptors. Macrophage-nociceptor interactions are also mediated by microRNAs and microRNA-containing exosomes in chronic pain. Notably, extracellular microRNAs (e.g. let-7b and miR-711) can directly bind and activate nociceptors. Targeting macrophage-nociceptor interactions will help to control inflammation and pain.

Learn More >

Down-regulation of spinal 5-HT and 5-HT receptors contributes to somatic hyperalgesia induced by orofacial inflammation combined with stress.

Patients suffering with functional somatic pain syndromes such as temporomandibular disorders (TMD) and fibromyalgia syndrome (FMS) have some similar symptoms, but the underlying cause is still unclear. The purpose of this study was to investigate whether 5-HT and 5-HT receptors in the spinal cord contribute to somatic hyperalgesia induced by orofacial inflammation combined with different modes of stress. Ovariectomized rats were injected subcutaneously with estradiol and bilateral masseter muscles were injected with complete Freund's adjuvant followed by stress. Somatic sensitivity was assessed with thermal and mechanical stimulation. The anxiety- and depression-like behaviors were measured by immobility time, sucrose preference, elevated plus maze and open field tests. The expression of 5-HT and 5-HT receptors in the spinal cord was examined by western blot. Orofacial inflammation combined with 11 day forced swim stress (FSS) induced persistent mechanical allodynia for 15 days and thermal hyperalgesia for 2 days. The mechanical and thermal hyperalgesia lasted for 43 days and 30 days respectively following orofacial inflammation combined with 11 day heterotypic stress. Orofacial inflammation combined with stress induced anxiety- and depression-like behaviors. The expression of 5-HT and 5-HT receptors significantly decreased in the orofacial inflammation combined with stress groups. Intrathecal injection of 5-HT or 5-HT receptor agonist reversed somatic hyperalgesia. The results suggest that down-regulation of 5-HT and 5-HT receptors in the spinal cord contributes to somatic hyperalgesia induced by orofacial inflammation combined with stress, indicating that 5-HT and 5-HT receptors may be potential targets in the treatment of TMD comorbid with FMS.

Learn More >

Search