I am a
Home I AM A Search Login

Animal Studies

Share this

Antihyperalgesic effects of intrathecal perospirone in a rat model of neuropathic pain.

The descending serotonergic pathway, from the brainstem to spinal cord, modulates various aspects of pain processing. The spinal 5-hydroxytryptamine (5-HT) and 5-HT receptors play pivotal roles in pain modulation. Perospirone is a novel atypical antipsychotic that serves as a 5-hydroxytryptamine (5-HT) receptor agonist, a 5-HT receptor antagonist, and a dopamine D receptor antagonist. Little is known about the effect of perospirone on pain transmission. Here, we explored whether perospirone attenuated neuropathic and inflammatory pain in the spinal cord. A chronic constriction injury to the sciatic nerve was induced in male Sprague-Dawley rats. We evaluated the effects of intrathecal administration of perospirone (10, 20, or 40 μg) on mechanical and cold hyperalgesia using the electronic von Frey and cold plate tests, respectively. Normal rats were assessed in terms of inflammatory nociception using the formalin test and for motor coordination employing the rotarod test. To define the mechanism underlying the action of perospirone, the effects of intrathecal pretreatment with the 5-HT receptor antagonist WAY-100635, the 5-HT receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-aminopropane (DOI), and the dopamine D receptor agonist sumanirole on perospirone action were examined using the electronic von Frey test and cold plate test. Perospirone dose-dependently alleviated mechanical and cold hyperalgesia, but not inflammatory nociception in the spinal cord, and affected motor coordination. WAY-100635 reversed the antihyperalgesic action of perospirone significantly, but neither DOI nor sumanirole exhibited such an effect. We conclude that perospirone attenuates mechanical and cold hyperalgesia principally via 5-HT receptor activation in the spinal cord, and the agent is a promising novel candidate for neuropathic pain relief.

Learn More >

Losartan attenuates neuroinflammation and neuropathic pain in paclitaxel-induced peripheral neuropathy.

Paclitaxel-induced peripheral neuropathy (PIPN) is often associated with neuropathic pain and neuroinflammation in the central and peripheral nervous system. Antihypertensive drug losartan, an angiotensin II receptor type 1 (AT1R) blocker, was shown to have anti-inflammatory and neuroprotective effects in disease models, predominantly via activation of peroxisome proliferator-activated receptor gamma (PPARγ). Here, the effect of systemic losartan treatment (100 mg/kg/d) on mechanical allodynia and neuroinflammation was evaluated in rat PIPN model. The expression of pro-inflammatory markers protein and mRNA levels in dorsal root ganglia (DRGs) and spinal cord dorsal horn (SCDH) were measured with Western blot, ELISA and qPCR 10 and 21 days after PIPN induction. Losartan treatment attenuated mechanical allodynia significantly. Paclitaxel induced overexpression of C-C motif chemokine ligand 2 (CCL2), tumour necrosis alpha (TNFα) and interleukin-6 (IL-6) in DRGs, where the presence of macrophages was demonstrated. Neuroinflammatory changes in DRGs were accompanied with glial activation and pro-nociceptive modulators production in SCDH. Losartan significantly attenuated paclitaxel-induced neuroinflammatory changes and induced expression of pro-resolving markers (Arginase 1 and IL-10) indicating a possible shift in macrophage polarization. Considering the safety profile of losartan, acting also as partial PPARγ agonist, it may be considered as a novel treatment strategy for PIPN patients.

Learn More >

Phospholipase A Inhibitor-Loaded Phospholipid Micelles Abolish Neuropathic Pain.

Treating persistent neuropathic pain remains a major clinical challenge. Current conventional treatment approaches carry a substantial risk of toxicity and provide only transient pain relief. In this work, we show that the activity and expression of the inflammatory mediator secretory phospholipase-A (sPLA) enzyme increases in the spinal cord after painful nerve root compression. We then develop phospholipid micelle-based nanoparticles that release their payload in response to sPLA activity. Using a rodent model of neuropathic pain, phospholipid micelles loaded with the sPLA inhibitor, thioetheramide-PC (TEA-PC), are administered either locally or intravenously at the time of painful injury or 1-2 days afterwards. Local micelle administration immediately after compression prevents pain for up to 7 days. Delayed intravenous administration of the micelles attenuates existing pain. These findings suggest that sPLA inhibitor-loaded micelles can be a promising anti-inflammatory nanotherapeutic for neuropathic pain treatment.

Learn More >

Characteristics of cortical spreading depression and c-Fos expression in transgenic mice having a mutation associated with familial hemiplegic migraine 2.

Cortical spreading depression is thought to be the underlying mechanism of migraine aura. In 2006, three relatives having the point mutation E700K in exon 15 were diagnosed with familial hemiplegic migraine 2 characterized by complicated forms of aura. Here, we generated a transgenic mouse model having the human E700K mutation in the orthologous gene.

Learn More >

PD-1 blockade inhibits osteoclast formation and murine bone cancer pain.

Emerging immune therapy, such as with the anti-programmed cell death-1 (anti-PD-1) monoclonal antibody nivolumab, has shown efficacy in tumor suppression. Patients with terminal cancer suffer from cancer pain as a result of bone metastasis and bone destruction, but how PD-1 blockade affects bone cancer pain remains unknown. Here, we report that mice lacking Pdcd1 (Pd1-/-) demonstrated remarkable protection against bone destruction induced by femoral inoculation of Lewis lung cancer cells. Compared with WT mice, Pd1-/- mice exhibited increased baseline pain sensitivity, but the development of bone cancer pain was compromised in Pd1-/- mice. Consistently, these beneficial effects in Pd1-/- mice were recapitulated by repeated i.v. applications of nivolumab in WT mice, even though nivolumab initially increased mechanical and thermal pain. Notably, PD-1 deficiency or nivolumab treatment inhibited osteoclastogenesis without altering tumor burden. PD-L1 and CCL2 are upregulated within the local tumor microenvironment, and PD-L1 promoted RANKL-induced osteoclastogenesis through JNK activation and CCL2 secretion. Bone cancer upregulated CCR2 in primary sensory neurons, and CCR2 antagonism effectively reduced bone cancer pain. Our findings suggest that, despite a transient increase in pain sensitivity following each treatment, anti-PD-1 immunotherapy could produce long-term benefits in preventing bone destruction and alleviating bone cancer pain by suppressing osteoclastogenesis.

Learn More >

Differences in pituitary adenylate cyclase-activating peptide and calcitonin gene-related peptide release in the trigeminovascular system.

Several neurotransmitters are expressed in the neurons of the trigeminal ganglion. One such signalling molecule is the pituitary adenylate cyclase-activating peptide (PACAP). PACAP signalling has been suggested to have a possible role in the pathophysiology of primary headaches.

Learn More >

Oxytocin as a regulatory neuropeptide in the trigeminovascular system: Localization, expression and function of oxytocin and oxytocin receptors.

Recent clinical findings suggest that oxytocin could be a novel treatment for migraine. However, little is known about the role of this neuropeptide/hormone and its receptor in the trigeminovascular pathway. Here we determine expression, localization, and function of oxytocin and oxytocin receptors in rat trigeminal ganglia and targets of peripheral (dura mater and cranial arteries) and central (trigeminal nucleus caudalis) afferents.

Learn More >

TMEM163 Regulates ATP-Gated P2X Receptor and Behavior.

Fast purinergic signaling is mediated by ATP and ATP-gated ionotropic P2X receptors (P2XRs), and it is implicated in pain-related behaviors. The properties exhibited by P2XRs vary between those expressed in heterologous cells and in vivo. Several modulators of ligand-gated ion channels have recently been identified, suggesting that there are P2XR functional modulators in vivo. Here, we establish a genome-wide open reading frame (ORF) collection and perform functional screening to identify modulators of P2XR activity. We identify TMEM163, which specifically modulates the channel properties and pharmacology of P2XRs. We also find that TMEM163 is required for full function of the neuronal P2XR and a pain-related ATP-evoked behavior. These results establish TMEM163 as a critical modulator of P2XRs in vivo and a potential target for the discovery of drugs for treating pain.

Learn More >

Kallikrein 7 promotes atopic dermatitis-associated itch independently of skin inflammation.

Atopic dermatitis (AD) is a highly prevalent, itchy inflammatory skin disorder that is thought to arise from a combination of defective skin barrier and immune dysregulation. Kallikreins (KLK), a family of serine proteases with a diverse array of homeostatic functions including skin desquamation and innate immunity, are speculated to contribute to AD pathogenesis. Their precise role in AD, however, has not been clearly defined. In this study, unbiased RNA-seq analyses identified KLK7 as the most abundant and differentially expressed KLK in both human AD and murine AD-like skin. Further, in mice, Klk7 expression was localized to the epidermis in both steady state and inflammation. However, KLK7 was dispensable for the development of AD-associated skin inflammation. Instead, KLK7 was selectively required for AD-associated chronic itch. Even without alleviation of skin inflammation, KLK7-deficient mice exhibited significantly attenuated scratching, compared to controls, after AD-like disease induction. Collectively, our findings indicate that KLK7 promotes AD-associated itch independently from skin inflammation, and reveal a previously unrecognized epidermal-neural mechanism of AD itch.

Learn More >

Regulation of TRPM8 channel activity by Src-mediated tyrosine phosphorylation.

The transient receptor potential melastatin type 8 (TRPM8) receptor channel is expressed in primary afferent neurons where it is the main transducer of innocuous cold temperatures and also in a variety of tumors, where it is involved in progression and metastasis. Modulation of this channel by intracellular signaling pathways has therefore important clinical implications. We investigated the modulation of recombinant and natively expressed TRPM8 by the Src kinase, which is known to be involved in cancer pathophysiology and inflammation. Human TRPM8 expressed in HEK293T cells is constitutively tyrosine phosphorylated by Src which is expressed either heterologously or endogenously. Src action on TRPM8 potentiates its activity, as treatment with PP2, a selective Src kinase inhibitor, reduces both TRPM8 tyrosine phosphorylation and cold-induced channel activation. RNA interference directed against the Src kinase diminished the extent of PP2-induced functional downregulation of TRPM8, confirming that PP2 acts mainly through Src inhibition. Finally, the effect of PP2 on TRPM8 cold activation was reproduced in cultured rat dorsal root ganglion neurons, and this action was antagonized by the protein tyrosine phosphatase inhibitor pervanadate, confirming that TRPM8 activity is sensitive to the cellular balance between tyrosine kinases and phosphatases. This positive modulation of TRPM8 by Src kinase may be relevant for inflammatory pain and cancer signaling.

Learn More >

Search