I am a
Home I AM A Search Login

Animal Studies

Share this

Vitamin D is an endogenous partial agonist of the transient receptor potential vanilloid 1 channel.

25OHD is a partial agonist of TRPV1 whereby 25OHD can weakly activate TRPV1 yet antagonize the stimulatory effects of the full TRPV1 agonists capsaicin and oleoyl dopamine. 25OHD binds to TRPV1 within the same vanilloid binding pocket as capsaicin. 25OHD inhibits the potentiating effects of PKC-mediated TRPV1 activity. 25OHD reduces T-cell activation and trigeminal neuron calcium signalling mediated by TRPV1 activity. These results provide evidence that TRPV1 is a novel receptor for the biological actions of vitamin D in addition to the well-documented effects of vitamin D upon the nuclear vitamin D receptor. Our results may have important implications for our current understanding of certain diseases where TRPV1 and vitamin D deficiency have been implicated, such as chronic pain and autoimmune diseases, such as Type 1 Diabetes.

Learn More >

Single-nucleus characterization of adult mouse spinal dynorphin-lineage cells and identification of persistent transcriptional effects of neonatal hindpaw incision.

Neonatal tissue damage can have long-lasting effects on nociceptive processing in the central nervous system, which may reflect persistent injury-evoked alterations to the normal balance between synaptic inhibition and excitation in the spinal dorsal horn. Spinal dynorphin-lineage (pDyn) neurons are part of an inhibitory circuit which limits the flow of nociceptive input to the brain and is disrupted by neonatal tissue damage. To identify the potential molecular underpinnings of this disruption, an unbiased single-nucleus RNAseq analysis of adult mouse spinal pDyn cells characterized this population in depth and then identified changes in gene expression evoked by neonatal hindpaw incision. The analysis revealed 11 transcriptionally distinct subpopulations (ie, clusters) of dynorphin-lineage cells, including both inhibitory and excitatory neurons. Investigation of injury-evoked differential gene expression identified 15 genes that were significantly upregulated or downregulated in adult pDyn neurons from neonatally incised mice compared with naive littermate controls, with both cluster-specific and pan-neuronal transcriptional changes observed. Several of the identified genes, such as Oxr1 and Fth1 (encoding ferritin), were related to the cellular stress response. However, the relatively low number of injury-evoked differentially expressed genes also suggests that posttranscriptional regulation within pDyn neurons may play a key role in the priming of developing nociceptive circuits by early-life injury. Overall, the findings reveal novel insights into the molecular heterogeneity of a key population of dorsal horn interneurons that has previously been implicated in the suppression of mechanical pain and itch.

Learn More >

Peripheral soluble epoxide hydrolase inhibition reduces hypernociception and inflammation in albumin-induced arthritis in temporomandibular joint of rats.

Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovial tissue, joint dysfunction, and damage. Epoxyeicosatrienoic acids (EETs) are endogenous anti-inflammatory compounds, which are quickly converted by the soluble epoxide hydrolase (sEH) enzyme into a less active form with decreased biological effects. The inhibition of the sEH enzyme has been used as a strategy to lower nociception and inflammation. The goal of this study was to investigate whether the peripheral treatment with the sEH enzyme inhibitor 1- trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) could prevent the hypernociception and inflammation in the albumin-induced arthritis model in rats' temporomandibular joint (TMJ). After the induction of experimental arthritis, animals were assessed for nociceptive behavior test, leukocyte infiltration counts and histologic analysis, ELISA to quantify several cytokines and Western blotting. The peripheral pretreatment with TPPU inhibited the arthritis-induced TMJ hypernociception and leukocyte migration. Moreover, the local concentrations of proinflammatory cytokines were diminished by TPPU, while the anti-inflammatory cytokine interleukin-10 was up-regulated in the TMJ tissue. Finally, TPPU significantly decreased protein expression of iNOS, while did not alter the expression of MRC1. This study provides evidence that the peripheral administration of TPPU reduces hypernociception and inflammation in TMJ experimental arthritis.

Learn More >

Neuronal uptake transporters contribute to oxaliplatin neurotoxicity in mice.

Peripheral neurotoxicity is a debilitating condition that afflicts up to 90% of patients with colorectal cancer receiving oxaliplatin-containing therapy. Although emerging evidence has highlighted the importance of various solute carriers to the toxicity of anticancer drugs, the contribution of these proteins to oxaliplatin-induced peripheral neurotoxicity remains controversial. Among candidate transporters investigated in genetically engineered mouse models, we provide evidence for a critical role of the organic cation transporter 2 (OCT2) in satellite glial cells in oxaliplatin-induced neurotoxicity, and demonstrate that targeting OCT2 using genetic and pharmacological approaches ameliorates acute and chronic forms of neurotoxicity. The relevance of this transport system was verified in transporter-deficient rats as a secondary model organism, and translational significance of preventive strategies was demonstrated in preclinical models of colorectal cancer. These studies suggest that pharmacological targeting of OCT2 could be exploited to afford neuroprotection in cancer patients requiring treatment with oxaliplatin.

Learn More >

Design and in vivo activity of A adenosine receptor agonist prodrugs.

Prodrugs (MRS7422, MRS7476) of highly selective A adenosine receptor (AR) agonists Cl-IB-MECA and MRS5698, respectively, were synthesized by succinylation of the 2' and 3' hydroxyl groups, and the parent, active drug was shown to be readily liberated upon incubation with liver esterases. The prodrug MRS7476 had greatly increased aqueous solubility compared with parent MRS5698 and was fully efficacious and with a longer duration than MRS7422 in reversing mouse neuropathic pain (chronic constriction injury model, 3 μmol/kg, p.o.), a known AAR effect. MRS7476 (5 mg/kg, p.o., twice daily) was found to protect against non-alcoholic steatohepatitis (NASH) in the STAM mouse model, indicated by the NAFLD activity score. Hepatocyte ballooning, IL-10 production, and liver histology were significantly normalized in the MRS7476-treated mice, but not liver fibrosis (no change in ACTA2 levels) or inflammation. Hepatic expression of ADORA3 in human NAFLD patients was 1.9-fold lower compared to normal controls. Adora3 expression determined by qPCR in primary mouse liver was associated with the stellate cells, and its mouse full body AAR knockout worsened liver markers of inflammation and steatosis. Thus, we have introduced a reversible prodrug strategy that enables water solubility and in vivo activity of masked AAR agonists in models of two disease conditions.

Learn More >

Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons.

Oxytocin (OT) is a great facilitator of social life but, although its effects on socially relevant brain regions have been extensively studied, OT neuron activity during actual social interactions remains unexplored. Most OT neurons are magnocellular neurons, which simultaneously project to the pituitary and forebrain regions involved in social behaviors. In the present study, we show that a much smaller population of OT neurons, parvocellular neurons that do not project to the pituitary but synapse onto magnocellular neurons, is preferentially activated by somatosensory stimuli. This activation is transmitted to the larger population of magnocellular neurons, which consequently show coordinated increases in their activity during social interactions between virgin female rats. Selectively activating these parvocellular neurons promotes social motivation, whereas inhibiting them reduces social interactions. Thus, parvocellular OT neurons receive particular inputs to control social behavior by coordinating the responses of the much larger population of magnocellular OT neurons.

Learn More >

Assessment of the anti-allodynic efficacy of a glycine transporter 2 inhibitor relative to pregabalin and duloxetine in a rat model of prostate cancer-induced bone pain.

The pathobiology of prostate cancer-induced bone pain (PCIBP) is underpinned by both inflammatory and neuropathic components. Here, we used a rat model of PCIBP to assess the analgesic efficacy of a glycine transporter 2 (GlyT2) inhibitor (N-(6-((1,3-dihydroxypropan-2-yl)amino)-2-(dimethylamino)pyridin-3-yl)-3,5-dimethoxy-4-(4-(trifluoromethyl)phenoxy) benzamide) relative to two clinically available adjuvant drugs that are recommended for the relief of neuropathic pain, viz, pregabalin and duloxetine.

Learn More >

SUMOylation of Enzymes and Ion Channels in Sensory Neurons Protects against Metabolic Dysfunction, Neuropathy, and Sensory Loss in Diabetes.

Diabetic peripheral neuropathy (DPN) is a highly frequent and debilitating clinical complication of diabetes that lacks therapies. Cellular oxidative stress regulates post-translational modifications, including SUMOylation. Here, using unbiased screens, we identified key enzymes in metabolic pathways and ion channels as novel molecular targets of SUMOylation that critically regulated their activity. Sensory neurons of diabetic patients and diabetic mice demonstrated changes in the SUMOylation status of metabolic enzymes and ion channels. In support of this, profound metabolic dysfunction, accelerated neuropathology, and sensory loss were observed in diabetic gene-targeted mice selectively lacking the ability to SUMOylate proteins in peripheral sensory neurons. TRPV1 function was impaired by diabetes-induced de-SUMOylation as well as by metabolic imbalance elicited by de-SUMOylation of metabolic enzymes, facilitating diabetic sensory loss. Our results unexpectedly uncover an endogenous post-translational mechanism regulating diabetic neuropathy in patients and mouse models that protects against metabolic dysfunction, nerve damage, and altered sensory perception.

Learn More >

Sustained-release buprenorphine induces acute opioid tolerance in the mouse.

Sustained-release buprenorphine is widely used in mice with the intention of providing long-lasting analgesia. Statements about duration of therapeutic efficacy are based on persistence of serum buprenorphine levels over a minimum threshold, but behavioral data demonstrating sustained efficacy is not established. Additionally, chronic opioid exposure can induce tolerance and/or hyperalgesia; mice receiving sustained-release buprenorphine have not been evaluated for these effects. This study assessed clinical efficacy and duration of sustained-release buprenorphine in inflammatory, post-operative, and cancer pain; and screened for centrally-mediated opioid-induced hyperalgesia as well as opioid tolerance. At 1-2 mg/kg sustained-release buprenorphine, statistically significant analgesic efficacy occurred only at time points up to 2 h. These animals showed no changes in von Frey thresholds on the contralateral side, i.e. no centrally-mediated opioid hyperalgesia. To establish whether acute onset opioid tolerance resulted from a single sustained-release buprenorphine administration, we used the tail flick assay, exposing mice to sustained-release buprenorphine or saline on Day 1 and buprenorphine on Day 2. We measured duration and efficacy of 1 mg/kg buprenorphine after 1 mg/kg sustained-release buprenorphine, and also quantified a dose-response curve of buprenorphine (0.1-3 mg/kg) after 2 mg/kg sustained-release buprenorphine. Compared to control animals, mice previously exposed to sustained-release buprenorphine showed diminished analgesic response to buprenorphine; the resultant dose-response curve showed decreased efficacy. Pretreatment with naloxone, an opioid receptor antagonist, blocked sustained-release buprenorphine analgesic action. The short duration of antinociception following administration of sustained-release buprenorphine in mice is caused by the rapid development of tolerance.

Learn More >

Mechanical pain of the lower extremity after compression of the upper spinal cord involves signal transducer and activator of transcription 3-dependent reactive astrocytes and interleukin-6.

Chronic pain is one of the main symptoms of spinal disorders such as spinal canal stenosis. A major cause of this pain is related to compression of the spinal cord, and chronic pain can develop at the level of the compressed spinal segment. However, in many patients chronic pain arises in an area that does not correspond to the compressed segment, and the underlying mechanism involved remains unknown. This was investigated in the present study using a mouse model of spinal cord compression in which mechanical pain of the hindpaws develops after compression of the first lumbar segment (L1) of the spinal cord. Compression induced the activation of astrocytes in the L1 spinal dorsal horn (SDH)-but not the L4 SDH that corresponds to the hindpaws-and activated signal transducer and activator of transcription 3 (STAT3). Suppressing reactive astrocytes by expressing a dominant negative form of STAT3 (dnSTAT3) in the compressed SDH prevented mechanical pain. Expression of interleukin (IL)-6 was also upregulated in the compressed SDH, and it was inhibited by astrocytic expression of dnSTAT3. Intrathecal administration of a neutralizing anti-IL-6 antibody reversed the compression-induced mechanical pain. These results suggest that astrocytic STAT3 and IL-6 in the compressed SDH are involved in remote mechanical pain observed in the lower extremity, and may provide a target for treating chronic pain associated with spinal cord compression such as spinal canal stenosis.

Learn More >

Search