I am a
Home I AM A Search Login

Animal Studies

Share this

Serotonin plays a key role in the development of opioid-induced hyperalgesia in mice.

Opioid usage for pain therapy is limited by its undesirable clinical effects, including paradoxical hyperalgesia, also known as opioid-induced hyperalgesia, (OIH). However, the mechanisms associated with the development and maintenance of OIH remain unclear. Here, we investigated the effect of serotonin inhibition by the 5-HT receptor antagonist, ondansetron (OND), as well as serotonin deprivation via its synthesis inhibitor para-chlorophenylalanine (PCPA), on mouse OIH models, with particular focus on astrocyte activation. Co-administering of OND and morphine, in combination with serotonin depletion, inhibited mechanical hyperalgesia and astrocyte activation in the spinal dorsal horn of mouse OIH models. Although previous studies have suggested that activation of astrocytes in the spinal dorsal horn is essential for the development and maintenance of OIH, herein, treatment with carbenoxolone (CBX), a gap junction inhibitor that suppresses astrocyte activation, did not ameliorate mechanical hyperalgesia in mouse OIH models. These results indicate that serotonin in the spinal dorsal horn, and activation of the 5-HT receptor play essential roles in OIH induced by chronic morphine, while astrocyte activation in the spinal dorsal horn serves as a secondary effect of OIH. Our findings further suggest that serotonergic regulation in the spinal dorsal horn may be a therapeutic target of OIH. PERSPECTIVE: The current study revealed that the descending serotonergic pain-facilitatory system in the spinal dorsal horn is crucial in OIH, and that activation of astrocytes is a secondary phenotype of OIH. Our study offers new therapeutic targets for OIH and may help reduce inappropriate opioid use.

Learn More >

Protection against oxaliplatin-induced mechanical and thermal hypersensitivity in Sarm1 mice.

Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting side effect of cancer treatment, often associated with degeneration of sensory axons or their terminal regions. Presence of the slow Wallerian degeneration protein (WLD), or genetic deletion of sterile alpha and TIR motif containing protein 1 (SARM1), which strongly protect axons from degeneration after injury or axonal transport block, alleviate pain in several CIPN models. However, oxaliplatin can cause an acute pain response, suggesting a different mechanism of pain generation. Here, we tested whether the presence of WLD or absence of SARM1 protects against acute oxaliplatin-induced pain in mice after a single oxaliplatin injection. In BL/6 and Wld mice, oxaliplatin induced significant mechanical and cold hypersensitivities which were absent in Sarm1 mice. Despite the presence of hypersensitivity there was no significant loss of intraepidermal nerve fibers (IENFs) in the footpads of any mice after oxaliplatin treatment, suggesting that early stages of pain hypersensitivity could be independent of axon degeneration. To identify other changes that could underlie the pain response, RNA sequencing was carried out in DRGs from treated and control mice of each genotype. Sarm1 mice had fewer gene expression changes than either BL/6 or Wld mice. This is consistent with the pain measurements in demonstrating that Sarm1DRGs remain relatively unchanged after oxaliplatin treatment, unlike those in BL/6 and Wld mice. Changes in levels of four transcripts – Alas2, Hba-a1, Hba-a2, and Tfrc – correlated with oxaliplatin-induced pain, or absence thereof, across the three genotypes. Our findings suggest that targeting SARM1 could be a viable therapeutic approach to prevent oxaliplatin-induced acute neuropathic pain.

Learn More >

TRPM3 channels play roles in heat hypersensitivity and spontaneous pain after nerve injury.

Transient Receptor Potential Melastatin 3 (TRPM3) is a heat-activated ion channel in primary sensory neurons of the dorsal root ganglia (DRG). Pharmacological and genetic studies implicated TRPM3 in various pain modalities, but TRPM3 inhibitors were not validated in TRPM3 mice. Here we tested two inhibitors of TRPM3 in male and female wild type and TRPM3 mice in nerve injury-induced neuropathic pain. We found that intraperitoneal injection of either isosakuranetin, or primidone reduced heat hypersensitivity induced by chronic constriction injury (CCI) of the sciatic nerve, in wild type, but not in TRPM3 mice. Primidone was also effective when injected locally in the hind paw, or intrathecally. Consistently, intrathecal injection of the TRPM3 agonist CIM0216 reduced paw withdrawal latency to radiant heat in wild type, but not in TRPM3 mice. Intraperitoneal injection of 2 mg/kg, but not 0.5 mg/kg isosakuranetin, inhibited cold and mechanical hypersensitivity in CCI, both in wild-type and TRPM3 mice, indicating a dose dependent off target effect. Primidone had no effect on cold sensitivity, and only a marginal effect on mechanical hypersensitivity. Genetic deletion or inhibitors of TRPM3 reduced the increase in the levels of the early genes cFos and pERK in the spinal cord and DRG in CCI mice, suggesting spontaneous activity of the channel. Intraperitoneal isosakuranetin also inhibited spontaneous pain related behavior in CCI in the conditioned place preference assay, and this effect was eliminated in TRPM3 mice. Overall our data indicate a role of TRPM3 in heat hypersensitivity and in spontaneous pain after nerve injury.Neuropathic pain is a major unsolved medical problem. The heat-activated TRPM3 ion channel is a potential target for novel pain medications, but it is not clear what pain modalities it plays roles in. Here we used a combination of genetic and pharmacological tools to assess the role of this channel in spontaneous pain, heat-, cold- and mechanical hypersensitivity in a nerve injury model of neuropathic pain in mice. Our findings indicate a role for TRPM3 in heat hyperalgesia, and spontaneous pain, but not in cold, and mechanical hypersensitivity. We also find that not only TRPM3 located in the peripheral nerve termini, but also TRPM3 in the spinal cord, or proximal segments of DRG neurons is important for heat hypersensitivity.

Learn More >

The effect of electroacupuncture on regulating pain and depression-like behaviors induced by chronic neuropathic pain.

Recently, the role of electroacupuncture (EA) in chronic neuropathic pain has been widely reported. However, its specific mechanisms and ability to mitigate depression-like behaviors induced by chronic pain remains unclear. This study aims to determine the analgesic and antidepressant effect of EA.

Learn More >

Kv4.3 channel dysfunction contributes to trigeminal neuropathic pain manifested with orofacial cold hypersensitivity in rats.

Trigeminal neuropathic pain is the most debilitating pain disorder but current treatments including opiates are not effective. A common symptom of trigeminal neuropathic pain is cold allyodynia/hyperalgesia or cold hypersensitivity in orofacial area, a region where exposure to cooling temperatures are inevitable in daily life. Mechanisms underlying trigeminal neuropathic pain manifested with cold hypersensitivity are not fully understood. In this study, we investigated trigeminal neuropathic pain in male rats following infraorbital nerve chronic constrictive injury (ION-CCI). Assessed by the orofacial operant behavioral test, ION-CCI animals displayed orofacial cold hypersensitivity. The cold hypersensitivity was associated with the hyperexcitability of small-sized trigeminal ganglion (TG) neurons that innervated orofacial regions. Furthermore, ION-CCI resulted in a reduction of A-type voltage-gated K currents (IA currents) in these TG neurons. We further showed that these small-sized TG neurons expressed Kv4.3 voltage-gated K channels, and Kv4.3 expression in these cells was significantly down-regulated following ION-CCI. Pharmacological inhibition of Kv4.3 channels with phrixotoxin-2 inhibited IA-currents in these TG neurons and induced orofacial cold hypersensitivity. On the other hand, pharmacological potentiation of Kv4.3 channels amplified IA currents in these TG neurons and alleviated orofacial cold hypersensitivity in ION-CCI rats. Collectively, Kv4.3 down-regulation in nociceptive trigeminal afferent fibers may contribute to peripheral cold hypersensitivity following trigeminal nerve injury, and Kv4.3 activators may be clinically useful to alleviate trigeminal neuropathic pain. Trigeminal neuropathic pain, the most debilitating pain disorder, is often triggered and exacerbated by cooling temperatures. Here we created infraorbital nerve chronic constrictive injury (ION-CCI) in rats, an animal model of trigeminal neuropathic pain to show that dysfunction of Kv4.3 voltage-gated K channels in nociceptive-like trigeminal ganglion neurons underlies the trigeminal neuropathic pain manifested with cold hypersensitivity in orofacial regions. Furthermore, we demonstrate that pharmacological potentiation of Kv4.3 channels can alleviate orofacial cold hypersensitivity in ION-CCI rats. Our results may have clinical implications in trigeminal neuropathic pain in human patients, and Kv4.3 channels may be an effective therapeutic target for this devastating pain disorder.

Learn More >

Role of peripheral 5-HT, 5-HT and 5-HT receptors in the mechanical allodynia induced by serotonin in mice.

Serotonin (5-HT) acts as a neurotransmitter in the central nervous system (CNS) and as a mediator released by enterochromaffin cells to regulate intestinal motility. However, this amine also plays an important role as an inflammatory mediator and induces phenotypic changes of nociceptors. Despite the wide knowledge of the role of 5-HT in nociception, most studies have focused on its role in the CNS, while a clear information about its role in peripheral tissues is still lacking. In the present study, we investigated the role of peripheral 5-HT receptors in the nociceptive response induced by 5-HT or carrageenan in mice by using antagonists that target different 5-HT receptors. Mechanical nociceptive threshold was measured with an analgesimeter and evaluated after intraplantar (i.pl.) injection of 5-HT or carrageenan. 5-HT antagonists were injected via the i.pl. route. 5-HT (10, 20, 40 or 80 μg/paw) or carrageenan (100 μg/paw) induced mechanical allodynia. Pretreatment with isamoltane (5 μg; 5-HT antagonist) or ketanserine (1 μg; 5-HT antagonist) did not affect the mechanical allodynia induced by 5-HT. This response was inhibited by BRL 15572 (10 μg; 5-HT antagonist) or SB 269970 (25 μg; 5-HT antagonist). On the other hand, mechanical allodynia induced by 5-HT or carrageenan was exacerbated by ondansetron (10, 20 or 40 μg; 5-HT antagonist). The results indicate that activation of 5-HT and 5-HT receptors plays a role in the mechanical allodynia induced by 5-HT in mice. This study also demonstrates the inhibitory role of peripheral 5-HT receptors in the nociceptive response induced by 5-HT or carrageenan.

Learn More >

FcεR1 expressing nociceptors trigger allergic airway inflammation.

Lung nociceptor neurons amplify immune cell activity and mucus metaplasia in response to an inhaled allergen challenge in sensitized mice.

Learn More >

Peripheral nerve injury promotes morphine-seeking behavior in rats during extinction.

Chronic neuropathic pain and prescription opioid abuse represent highly interconnected societal problems. We used a rat model of spared nerve injury (SNI) and an intravenous drug self-administration paradigm to investigate the impact of a neuropathic pain state on morphine seeking behavior in extinction (i.e. when morphine is withheld). SNI, sham-operated and naive groups exhibited similar levels of active lever presses for morphine infusions on a fixed ratio 1 (FR1) schedule. Self-administration of morphine, but not vehicle, attenuated nerve injury-induced mechanical allodynia in SNI rats. Under these same conditions, mechanical paw withdrawal thresholds in sham-operated and naive groups were largely unaltered. However, SNI rats showed higher levels of morphine-seeking behavior compared to sham-operated or naïve groups in extinction (i.e. when vehicle was substituted for morphine). Interestingly, the perseveration of morphine-seeking behavior observed during extinction was only present in the SNI group despite the fact that all groups had a similar history of morphine self-administration intake. Our results suggest that different motivational states associated with neuropathic pain promote morphine-seeking behavior in extinction. Drug self-administration paradigms may be useful for evaluating analgesic efficacy and motivational properties associated with opioid reinforcers in pathological pain states.

Learn More >

STING controls nociception via type I interferon signalling in sensory neurons.

The innate immune regulator STING is a critical sensor of self- and pathogen-derived DNA. DNA sensing by STING leads to the induction of type-I interferons (IFN-I) and other cytokines, which promote immune-cell-mediated eradication of pathogens and neoplastic cells. STING is also a robust driver of antitumour immunity, which has led to the development of STING activators and small-molecule agonists as adjuvants for cancer immunotherapy. Pain, transmitted by peripheral nociceptive sensory neurons (nociceptors), also aids in host defence by alerting organisms to the presence of potentially damaging stimuli, including pathogens and cancer cells. Here we demonstrate that STING is a critical regulator of nociception through IFN-I signalling in peripheral nociceptors. We show that mice lacking STING or IFN-I signalling exhibit hypersensitivity to nociceptive stimuli and heightened nociceptor excitability. Conversely, intrathecal activation of STING produces robust antinociception in mice and non-human primates. STING-mediated antinociception is governed by IFN-Is, which rapidly suppress excitability of mouse, monkey and human nociceptors. Our findings establish the STING-IFN-I signalling axis as a critical regulator of physiological nociception and a promising new target for treating chronic pain.

Learn More >

Local immune response to food antigens drives meal-induced abdominal pain.

Up to 20% of people worldwide develop gastrointestinal symptoms following a meal, leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders.

Learn More >

Search