I am a
Home I AM A Search Login

Papers of the Week

Papers: 23 Jan 2021 - 29 Jan 2021

Animal Studies, Pharmacology/Drug Development

2021 Jan 15

J Neurosci

TRPM3 channels play roles in heat hypersensitivity and spontaneous pain after nerve injury.


Su S, Yudin Y, Kim N, Tao Y-X, Rohacs T
J Neurosci. 2021 Jan 15.
PMID: 33478988.


Transient Receptor Potential Melastatin 3 (TRPM3) is a heat-activated ion channel in primary sensory neurons of the dorsal root ganglia (DRG). Pharmacological and genetic studies implicated TRPM3 in various pain modalities, but TRPM3 inhibitors were not validated in TRPM3 mice. Here we tested two inhibitors of TRPM3 in male and female wild type and TRPM3 mice in nerve injury-induced neuropathic pain. We found that intraperitoneal injection of either isosakuranetin, or primidone reduced heat hypersensitivity induced by chronic constriction injury (CCI) of the sciatic nerve, in wild type, but not in TRPM3 mice. Primidone was also effective when injected locally in the hind paw, or intrathecally. Consistently, intrathecal injection of the TRPM3 agonist CIM0216 reduced paw withdrawal latency to radiant heat in wild type, but not in TRPM3 mice. Intraperitoneal injection of 2 mg/kg, but not 0.5 mg/kg isosakuranetin, inhibited cold and mechanical hypersensitivity in CCI, both in wild-type and TRPM3 mice, indicating a dose dependent off target effect. Primidone had no effect on cold sensitivity, and only a marginal effect on mechanical hypersensitivity. Genetic deletion or inhibitors of TRPM3 reduced the increase in the levels of the early genes cFos and pERK in the spinal cord and DRG in CCI mice, suggesting spontaneous activity of the channel. Intraperitoneal isosakuranetin also inhibited spontaneous pain related behavior in CCI in the conditioned place preference assay, and this effect was eliminated in TRPM3 mice. Overall our data indicate a role of TRPM3 in heat hypersensitivity and in spontaneous pain after nerve injury.Neuropathic pain is a major unsolved medical problem. The heat-activated TRPM3 ion channel is a potential target for novel pain medications, but it is not clear what pain modalities it plays roles in. Here we used a combination of genetic and pharmacological tools to assess the role of this channel in spontaneous pain, heat-, cold- and mechanical hypersensitivity in a nerve injury model of neuropathic pain in mice. Our findings indicate a role for TRPM3 in heat hyperalgesia, and spontaneous pain, but not in cold, and mechanical hypersensitivity. We also find that not only TRPM3 located in the peripheral nerve termini, but also TRPM3 in the spinal cord, or proximal segments of DRG neurons is important for heat hypersensitivity.