I am a
Home I AM A Search Login

Animal Studies

Share this

Acupuncture ameliorates not only atopic dermatitis-like skin inflammation but also acute and chronic serotonergic itch possibly through blockade of 5-HT2 and 5-HT7 receptors in mice.

Acupuncture has been known to be effective for atopic dermatitis, especially ameliorating itch; however, its mechanisms are still unclear. The aim of this study was to test the anti-itch effects of acupuncture and to investigate its possible mechanisms. Acupuncture was performed at Gok-Ji (LI11) acupoints just before the injection of pruritogens in the mouse cheek model of acute itch and of MC903-induced atopic dermatitis displaying serotonergic chronic itch. Acupuncture significantly reduced acute itch triggered by compound 48/80, chloroquine, or especially serotonin. It also markedly reduced scratching behaviors evoked by the serotonin 5-HT2 receptor agonist α-methylserotonin and selective 5-HT7 receptor agonist LP 44. In addition, acupuncture treatment at LI11 had the preventive and therapeutic effects on persistent itch as well as the robust skin inflammation with epidermal thickening in mice with MC903-induced atopic dermatitis. It also considerably reduced the increased expression of 5-HT2A, 5-HT2B and 5-HT7 receptors in atopic dermatitis-like skin lesions in mice treated with MC903. Taken together, these findings highlight that acupuncture significantly ameliorates not only skin inflammation, but also acute and chronic serotonergic itch, possibly through blockade of serotonin 5-HT2 and 5-HT7 receptors.

Learn More >

Selective targeting of peripheral cannabinoid receptors prevents behavioral symptoms and sensitization of trigeminal neurons in mouse models of migraine and medication overuse headache.

Migraine affects ∼15% of the world's population greatly diminishing their quality of life. Current preventative treatments are effective in only a subset of migraine patients, and while cannabinoids appear beneficial in alleviating migraine symptoms, central nervous system (CNS) side effects limit their widespread use. We developed peripherally-restricted cannabinoids (PRCBs) that relieve chronic pain symptoms of cancer and neuropathies, without appreciable CNS side effects or tolerance development. Here we determined PRCB effectiveness in alleviating hypersensitivity symptoms in mouse models of migraine and medication overuse headache (MOH). Chronic glyceryl trinitrate (GTN, 10 mg/kg) administration led to increased sensitivity to mechanical stimuli, and increased expression of phosphorylated protein kinase A (p-PKA), neuronal nitric oxide synthase (nNOS), and transient receptor potential ankyrin 1 (TRPA1) proteins in trigeminal ganglia. PRCB pretreatment, but not posttreatment, prevented behavioral and biochemical correlates of GTN-induced sensitization. Low pH- and allyl isothiocyanate-activated currents in acutely isolated trigeminal neurons were reversibly attenuated by PRCB application. Chronic GTN treatment significantly enhanced these currents. Chronic sumatriptan treatment also led to development of allodynia to mechanical and cold stimuli which was slowly reversible after sumatriptan discontinuation. Subsequent challenge with a previously ineffective low-dose GTN (0.1-0.3 mg/kg) revealed latent behavioral sensitization and increased expression of p-PKA, nNOS, and TRPA1 proteins in trigeminal ganglia. PRCB pretreatment prevented all behavioral and biochemical correlates of allodynia and latent sensitization. Importantly, chronic PRCB treatment alone did not produce any behavioral or biochemical signs of sensitization. These data validate peripheral cannabinoid receptors as potential therapeutic targets in migraine and MOH.

Learn More >

The µ-δ opioid heteromer masks Latent Pain Sensitization in neuropathic and inflammatory pain in male and female mice.

The episodic nature of chronic pain can be studied in the rodent model of latent pain sensitization. After remission, central sensitization is opposed by activation of opioid receptors. At the behavioral level, latent pain sensitization is unmasked when pain hypersensitivity is reinstated by opioid receptor (OR) antagonism. Previous studies have focused on inflammatory pain and male rodents. Whether latent pain sensitization occurs in models of chemotherapy-induced neuropathic pain in female and male mice is unknown. The first aim of this study was to investigate whether μ- and δ-OR suppress latent pain sensitization in our model of chemotherapy-induced neuropathic pain in both sexes. Mounting evidence suggests that μ-and δ-ORs form a heteromer and that the heteromer modulates pain sensitivity. Potential implications of the μ-δ OR heteromer in latent pain sensitization have not been fully explored due to a lack of tools to effectively modulate the heteromer. To specifically target the μ-δ OR heteromer, we used a specific interfering peptide blocking the heteromerization. The second aim of this study was to investigate whether disruption of the μ-δOR heteromer, after remission, reinstates pain hypersensitivity. After remission from cisplatin-induced neuropathic pain, antagonism of µOR and δOR reinstates pain hypersensitivity in both sexes. After remission from cisplatin-induced neuropathic pain and postoperative pain, disruption of the μ-δOR heteromer reinstates pain hypersensitivity in both sexes. Taken together our findings suggest that the μ-δOR heteromer plays a crucial role in remission in various pain models and may represent a novel therapeutic target to prevent the relapse to pain and the transition to chronic pain.

Learn More >

Donepezil attenuates the development of morphine tolerance in rats with cancer-induced bone pain: the role of cortical N-methyl-D-aspartate receptors.

Cancer-induced bone pain (CIBP), which is associated with poor quality of life, is most commonly treated using opioids. However, long-term use of morphine for analgesia induces tolerance and can diminish the treatment's effectiveness. The mechanisms that underlie morphine tolerance have been reported to be related to the inflammation of the nervous system and hyperactivation of N-methyl-D-aspartate receptors (NMDARs). Donepezil is an anti-inflammatory and neuroprotective drug that is thought to alleviate morphine tolerance. In this study, we aimed to investigate the effect of three different dosages of donepezil (1, 1.5 and 2 mg/kg) on morphine tolerance in rats with CIBP, and the possible involvement of donepezil-mediated NMDAR subunit 1 (NR1). We found that donepezil can prolong the analgesic efficacy of morphine and delay the development of chronic morphine tolerance. Furthermore, continuous morphine injection increased the expression of NR1, and this was suppressed by co-administration with donepezil using both western blotting and immunofluorescence. Our findings demonstrate that donepezil has the potential to attenuate morphine tolerance, possibly by inhibiting NR1 activity in the cortex.

Learn More >

A lipid-anchored neurokinin 1 receptor antagonist prolongs pain relief by a three-pronged mechanism of action targeting the receptor at the plasma membrane and in endosomes.

G protein-coupled receptors (GPCRs) are traditionally known for signaling at the plasma membrane, but they can also signal from endosomes after internalization to control important pathophysiological processes. In spinal neurons, sustained endosomal signaling of the neurokinin 1 receptor (NKR) mediates nociception, as demonstrated in models of acute and neuropathic pain. An NKR antagonist, Spantide I (Span), conjugated to cholestanol (Span-Chol), accumulates in endosomes, inhibits endosomal NKR signaling, and causes prolonged anti-nociception. However, the extent to which the Chol-anchor influences long-term location and activity is poorly understood. Herein, we used fluorescent correlation spectroscopy and targeted biosensors to characterize Span-Chol over time. The Chol-anchor increased local concentration of probe at the plasma membrane. Over time we observed an increase in NKR binding affinity and more potent inhibition of NKR-mediated calcium signaling. Span-Chol, but not Span, caused a persistent decrease in NKR recruitment of β-arrestin and receptor internalization to early endosomes. Using targeted biosensors, we mapped the relative inhibition of NKR signaling as the receptor moved into the cell. Span selectively inhibited cell surface signaling, whereas Span-Chol partitioned into endosomal membranes and blocked endosomal signaling. In a preclinical model of pain, Span-Chol caused prolonged antinociception (>9 h), which is attributable to a three-pronged mechanism of action: increased local concentration at membranes, a prolonged decrease in NKR endocytosis, and persistent inhibition of signaling from endosomes. Identifying the mechanisms that contribute to the increased preclinical efficacy of lipid-anchored NKR antagonists is an important step toward understanding how we can effectively target intracellular GPCRs in disease.

Learn More >

Methadone effectively attenuates acute and long-term consequences of neonatal repetitive procedural pain in a rat model.

Painful procedures in early life cause acute pain and can alter pain processing at a spinal level lasting into adulthood. Current methods of analgesia seem unable to prevent both acute and long-term hypersensitivity associated with neonatal pain. The current study aims to prevent acute and long-term hypersensitivity associated with neonatal procedural pain using methadone analgesia in rat pups.

Learn More >

Intrathecal Administration of an Anti-nociceptive Non-CpG Oligodeoxynucleotide Reduces Glial Activation and Central Sensitization.

Inflammatory pain associates with spinal glial activation and central sensitization. Systemic administration of IMT504, a non-CpG oligodeoxynucleotide originally designed as an immunomodulator, exerts remarkable anti-allodynic effects in rats with complete Freund´s adjuvant (CFA)-induced hindpaw inflammation. However, the anti-nociceptive mechanisms of IMT504 remain unknown. Here we evaluated whether IMT504 blocks inflammatory pain-like behavior by modulation of spinal glia and central sensitization. The study was performed in Sprague Dawley rats with intraplantar CFA, and a single lumbosacral intrathecal (i.t.) administration of IMT504 or vehicle was chosen to address if changes in glial activation and spinal sensitization relate to the pain-like behavior reducing effects of the ODN. Naïve rats were also included. Von Frey and Randall-Selitto tests, respectively, exposed significant reductions in allodynia and mechanical hypersensitivity, lasting at least 24 h after i.t. IMT504. Analysis of electromyographic responses to electrical stimulation of C fibers showed progressive reductions in wind-up responses. Accordingly, IMT504 significantly downregulated spinal glial activation, as shown by reductions in the protein expression of glial fibrillary acidic protein, CD11b/c, Toll-like receptor 4 (TLR4) and the phosphorylated p65 subunit of NFκB, evaluated by immunohistochemistry and western blot. In vitro experiments using early post-natal cortical glial cultures provided further support to in vivo data and demonstrated IMT504 internalization into microglia and astrocytes. Altogether, our study provides new evidence on the central mechanisms of anti-nociception by IMT504 upon intrathecal application, and further supports its value as a novel anti-inflammatory ODN with actions upon glial cells and the TLR4/NFκB pathway. Intrathecal administration of the non-CpG ODN IMT504 fully blocks CFA-induced mechanical allodynia and hypersensitivity, in association with reduced spinal sensitization. Administration of the ODN also results in downregulated gliosis and reduced TLR4-NF-κB pathway activation. IMT504 uptake into astrocytes and microglia support the concept of direct modulation of CFA-induced glial activation.

Learn More >

Chronic BDNF simultaneously inhibits and unmasks superficial dorsal horn neuronal activity.

Brain-derived neurotrophic factor (BDNF) is critically involved in the pathophysiology of chronic pain. However, the mechanisms of BDNF action on specific neuronal populations in the spinal superficial dorsal horn (SDH) requires further study. We used chronic BDNF treatment (200 ng/ml, 5-6 days) of defined-medium, serum-free spinal organotypic cultures to study intracellular calcium ([Ca]) fluctuations. A detailed quantitative analysis of these fluctuations using the Frequency-independent biological signal identification (FIBSI) program revealed that BDNF simultaneously depressed activity in some SDH neurons while it unmasked a particular subpopulation of 'silent' neurons causing them to become spontaneously active. Blockade of gap junctions disinhibited a subpopulation of SDH neurons and reduced BDNF-induced synchrony in BDNF-treated cultures. BDNF reduced neuronal excitability assessed by measuring spontaneous excitatory postsynaptic currents. This was similar to the depressive effect of BDNF on the [Ca] fluctuations. This study reveals novel regulatory mechanisms of SDH neuronal excitability in response to BDNF.

Learn More >

Aberrant axo-axonic synaptic reorganization in the phosphorylated L1-CAM/calcium channel subunit alpha2 delta-1-containing central terminals of injured c-fibers in the spinal cord of a neuropathic pain model.

In the dorsal horn of the spinal cord, peripheral nerve injury induces structural and neurochemical alterations through which aberrant synaptic signals contribute to the formation of neuropathic pain. However, the role of injured primary afferent terminals in such plastic changes remain unclear. In this study, we investigated the effect of nerve injury on the morphology of cell adhesion molecule L1-CAM (total L1-CAM [tL1-CAM])-positive primary afferent terminals and on the synaptic contact pattern in the dorsal horn. In the confocal images, the tL1-CAM-positive terminals showed morphological changes leading to the formation of hypertrophic varicosities in the c-fiber terminal. These hypertrophic varicosities in the dorsal horn were co-labeled with phosphorylated (Ser1181) L1-CAM (pL1-CAM) and shown to store neurotransmitter peptides, but not when co-labeled with the pre-synaptic marker, synaptophysin. Quantitative analyses based on three-dimensional reconstructed confocal images revealed that peripheral nerve injury reduced dendritic synaptic contacts but promoted aberrant axo-axonic contacts on the tL1-CAM-positive hypertrophic varicosities. These tL1-CAM-positive varicosities co-expressed the injury-induced alpha2delta-1 (α2δ-1) subunit of the calcium channel in the dorsal horn. Administration of the anti-allodynic drug, pregabalin, inhibited accumulation of α2δ-1 and pL1-CAM associated with a reduction in hypertrophic changes of tL1-CAM-positive varicosities, and normalized injury-induced alterations in synaptic contacts in the dorsal horn. Our findings highlight the formation of aberrant spinal circuits that mediate the convergence of local neuronal signals onto injured c-fibers, suggesting that these hypertrophic varicosities may be important contributors to the pathological mechanisms underlying neuropathic pain. We describe, for the first time, morphological changes in L1-CAM-positive injured c-fiber terminals that lead to the formation of hypertrophic varicosities, in which we found phosphorylation of L1-CAM and increased expression of the calcium channel subunit α2δ-1. Moreover, we found alterations in synaptic contacts and discovered that peripheral nerve injury increased axo-axonic contacts onto L1-CAM-positive varicosities while decreasing axo-dendritic contacts. These plastic changes indicate the convergence of neuronal signals onto the pain pathway and may represent a pathological mechanism underlying neuropathic pain. Administration of the anti-allodynic drug pregabalin reversed the injury-induced synaptic alternations. These data highlight the unique role of injured c-fibers in peripheral nerve injury and their role as a possible therapeutic target for neuropathic pain.

Learn More >

Functional disruption of cortical cingulate activity attenuates visceral hypersensitivity and anxiety induced by acute experimental colitis.

Visceral pain is a highly complex experience and is the most common pathological feature in patients suffering from inflammatory gastrointestinal disorders. Whilst it is increasingly recognized that aberrant neural processing within the gut-brain axis plays a key role in development of neurological symptoms, the underlying mechanisms remain largely unknown. Here, we investigated the cortical activation patterns and effects of non-invasive chemogenetic suppression of cortical activity on visceral hypersensitivity and anxiety-related phenotypes in a well-characterized mouse model of acute colitis induced by dextran sulfate sodium (DSS). We found that within the widespread cortical network, the mid-cingulate cortex (MCC) was consistently highly activated in response to innocuous and noxious mechanical stimulation of the colon. Furthermore, during acute experimental colitis, impairing the activity of the MCC successfully alleviated visceral hypersensitivity, anxiety-like behaviors and visceromotor responses to colorectal distensions (CRDs) via downregulating the excitability of the posterior insula (PI), somatosensory and the rostral anterior cingulate cortices (rACC), but not the prefrontal or anterior insula cortices. These results provide a mechanistic insight into the central cortical circuits underlying painful visceral manifestations and implicate MCC plasticity as a putative target in cingulate-mediated therapies for bowel disorders.

Learn More >

Search