I am a
Home I AM A Search Login

Animal Studies

Share this

Alkyne-Bridged α-Conotoxin Vc1.1 Potently Reverses Mechanical Allodynia in Neuropathic Pain Models.

Several -derived venom peptides are promising lead compounds for the management of neuropathic pain, with α-conotoxins being of particular interest. Modification of the interlocked disulfide framework of α-conotoxin Vc1.1 has been achieved using on-resin alkyne metathesis. Although introduction of a metabolically stable alkyne motif significantly disrupts backbone topography, the structural modification generates a potent and selective GABA receptor agonist that inhibits Ca2.2 channels and exhibits dose-dependent reversal of mechanical allodynia in a behavioral rat model of neuropathic pain. The findings herein support the hypothesis that analgesia can be achieved via activation of GABARs expressed in dorsal root ganglion (DRG) sensory neurons.

Learn More >

Discovery of Selective Pituitary Adenylate Cyclase 1 Receptor (PAC1R) Antagonist Peptides Potent in a Maxadilan/PACAP38-Induced Increase in Blood Flow Pharmacodynamic Model.

Inhibition of the pituitary adenylate cyclase 1 receptor (PAC1R) is a novel mechanism that could be used for abortive treatment of acute migraine. Our research began with comparative analysis of known PAC1R ligand scaffolds, PACAP38 and Maxadilan, which resulted in the selection of des(24-42) Maxadilan, , as a starting point. C-terminal modifications of improved the peptide metabolic stability and . SAR investigations identified synergistic combinations of amino acid replacements that significantly increased the PAC1R inhibitory activity of the analogs to the pM IC range. Our modifications further enabled deletion of up to six residues without impacting potency, thus improving peptide ligand binding efficiency. Analogs and exhibited robust efficacy in the rat Maxadilan-induced increase in blood flow (MIIBF) pharmacodynamic model at 0.3 mg/kg subcutaneous dosing. The first cocrystal structure of a PAC1R antagonist peptide () with PAC1R extracellular domain is reported.

Learn More >

Secretome of human adipose-derived mesenchymal stem cell relieves pain and neuroinflammation independently of the route of administration in experimental osteoarthritis.

Treatment of pain associated with osteoarthritis (OA) is unsatisfactory and innovative approaches are needed. The secretome from human adipose-derived mesenchymal stem cells (hASC-Conditioned Medium, CM) has been successfully used to relieve painful symptoms in models of chronic pain. The aim of this study was to explore the efficacy of the hASC-CM to control pain and neuroinflammation in an animal model of OA.

Learn More >

Selective blockade of transient receptor potential vanilloid 4 reduces cyclophosphamide-induced bladder pain in mice.

Transient receptor potential vanilloid 4 (TRPV4) is a non-selective cation channel activated by various physical stimuli such as cell swelling and shear stress. TRPV4 is expressed in bladder sensory nerves and epithelium, and its activation produces urinary dysfunction in rodents. However, there have been few reports regarding its involvement in bladder pain. Therefore, we investigated whether TRPV4 is involved in bladder pain in mouse cystitis model. Intraperitoneal injection of cyclophosphamide (CYP; 300 mg/kg) produced mechanical hypersensitivity in the lower abdomen associated with a severe inflammatory bladder in mice. The mechanical threshold was reversed significantly in Trpv4-knockout (KO) mice. Repeated injections of CYP (150 mg/kg) daily for 4 days provoked mild bladder inflammation and persistent mechanical hypersensitivity in mice. Trpv4-KO mice prevented a reduction of the mechanical threshold without an alteration in bladder inflammation. A selective TRPV4 antagonist also reversed the mechanical threshold in chronic cystitis mice. Although expression of Trpv4 was unchanged in the bladders of chronic cystitis mice, the level of phosphorylated TRPV4 was increased significantly. These results suggest involvement of TRPV4 in bladder pain of cystitis mice. A TRPV4 antagonist might be useful for patients with irritable bladder pain such as those with interstitial cystitis/painful bladder syndrome.

Learn More >

Respiratory depression and analgesia by opioid drugs in freely-behaving larval zebrafish.

An opioid epidemic is spreading in North America with millions of opioid overdoses annually. Opioid drugs, like fentanyl, target the mu opioid receptor system and induce potentially lethal respiratory depression. The challenge in opioid research is to find a safe pain therapy with analgesic properties but no respiratory depression. Current discoveries are limited by lack of amenable animal models to screen candidate drugs. Zebrafish () is an emerging animal model with high reproduction and fast development, which shares remarkable similarity in their physiology and genome to mammals. However, it is unknown whether zebrafish possesses similar opioid system, respiratory and analgesic responses to opioids than mammals. In freely-behaving larval zebrafish, fentanyl depresses the rate of respiratory mandible movements and induces analgesia, effects reversed by mu-opioid receptor antagonists. Zebrafish presents evolutionary conserved mechanisms of action of opioid drugs, also found in mammals, and constitute amenable models for phenotype-based drug discovery.

Learn More >

Altered sensory innervation and pain hypersensitivity in a model of young painful arthritic joints: short- and long-term effects.

Early life experience can cause long-term alterations in the nociceptive processes underlying chronic pain, but the consequences of early life arthritic joint inflammation upon the sensory innervation of the joint is not known. Here, we measure pain sensitivity and sensory innervation in a young, juvenile and adult rodent model of arthritic joints and test the consequences of joint inflammation in young animals upon adult arthritic pain and joint innervation.

Learn More >

Tetrahydrocannabinol (THC) exacerbates inflammatory bowel disease in adolescent and adult female rats.

Inflammatory Bowel Disease (IBD) is a life-long disorder that often begins between the ages of 15 and 30. Anecdotal reports suggest cannabinoids may be an effective treatment. This study sought to determine whether home cage wheel running is an effective method to assess IBD, and whether THC, the primary psychoactive compound in cannabis, can restore wheel running depressed by IBD. Adolescent and adult female Sprague-Dawley rats were individually housed in a cage with a running wheel. Rats were injected with trinitrobenzene sulphonic acid (TNBS) into the rectum to induce IBD-like symptoms. One day later, both vehicle and TNBS treated rats were injected with a low dose of THC (0.32 mg/kg, s.c.) or vehicle. Administration of TNBS depressed wheel running in adolescent and adult rats. No antinociceptive effect of THC was evident when administered 1 day after TNBS. In fact, administration of THC prolonged TNBS-induced depression of wheel running for over 5 days in adolescent and adult rats. These results show that home cage wheel running is affected by TNBS-induced IBD, making it a useful tool to evaluate the behavioral consequences of IBD, and that administration of THC, instead of producing antinociception, exacerbates TNBS-induced IBD. Perspective This article advances research on inflammatory bowel disease in two important ways: 1) Home cage wheel running is a new and sensitive tool to assess the behavioral consequences of IBD in adolescent and adult rats; and 2) Administration of the cannabinoid THC exacerbates the negative behavioral effects of IBD.

Learn More >

Cisplatin-induced activation and functional modulation of satellite glial cells lead to cytokine-mediated modulation of sensory neuron excitability.

Cisplatin plays an essential role in the treatment of various cancers. Cisplatin exhibits high efficacy, but it often leads to severe neurotoxic side effects, such as chemotherapy-induced polyneuropathy (CIPN). The pathophysiology of CIPN is not fully understood. There is increasing evidence for damage to satellite glial cells (SGC) and dorsal root ganglion (DRG) neurons. We investigated the influence of cisplatin on the function of SGCs and the direct influence on DRGs. Satellite glial cells were isolated from DRG and exposed to 0.1, 1, 10, or 100 μM cisplatin for 2 h, 4 h, and 24 h. Using immunocytochemical staining and Western blot analysis, the expression of the glial fibrillary acid protein (GFAP), reactive oxygen species (ROS), and inward rectifier potassium channel 4.1 (K) was determined. An increase in the immune reactivity (IR) and protein levels of GFAP and ROS was measured, and a reduction of IR and protein level of K was detected. A decrease in these channels' current density was observed using the whole-cell patch-clamp recording. The interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) release of SGCs increased after cisplatin exposure as measured using ELISA, and interleukin-1β (IL-1β) decreased. The SGC-secreted factors in the supernatant after cisplatin treatment led to a modulation of cultured DRG neurons' excitability. Taken together, the modulation and function of different SGC proteins could be linked to a direct impact of cisplatin. Further, SGC-secreted factors influenced the excitability of sensory neurons. Overall, SGCs could be a potential target in preventing and treating chemotherapy-induced neuropathic pain.

Learn More >

Examination of the contribution of Nav1.7 to axonal propagation in nociceptors.

Learn More >

Bidirectional modulation of pain-related behaviors in the zona incerta.

Learn More >

Search