I am a
Home I AM A Search Login

Animal Studies

Share this

Effects of External Low Intensity Focused Ultrasound on Inflammatory Markers in Neuropathic Pain.

Changes in inflammatory cytokine levels contribute to the induction and maintenance of neuropathic pain. We have shown that external low intensity focused ultrasound (liFUS) reduces allodynia in a common peroneal nerve injury (CPNI). Here, we investigate an underlying mechanism of action for this treatment and measure the effect of liFUS on inflammatory markers.

Learn More >

Identification of an N-acylated- D Arg-Leu-NH 2 Dipeptide as a Highly Selective Neuropeptide FF1 Receptor Antagonist That Potently Prevents Opioid-Induced Hyperalgesia.

RFamide-related peptide-3 (RFRP-3) and neuropeptide FF (NPFF) target two different receptor subtypes called neuropeptide FF1 (NPFF1R) and neuropeptide FF2 (NPFF2R) that modulate several functions. However, the study of their respective role is severely limited by the absence of selective blockers. We describe here the design of a highly selective NPFF1R antagonist called RF3286, which potently blocks RFRP-3-induced hyperalgesia in mice and luteinizing hormone release in hamsters. We then showed that the pharmacological blockade of NPFF1R in mice prevents the development of fentanyl-induced hyperalgesia while preserving its analgesic effect. Altogether, our data indicate that RF3286 represents a useful pharmacological tool to study the involvement of the NPFF1R/RFRP-3 system in different functions and different species. Thanks to this compound, we showed that this system is critically involved in the development of opioid-induced hyperalgesia, suggesting that NPFF1R antagonists might represent promising therapeutic tools to improve the use of opioids in the treatment of chronic pain.

Learn More >

α-Conotoxin Bt1.8 from Conus betulinus selectively inhibits α6/α3β2β3 and ɑ3β2 nicotinic acetylcholine receptor subtypes.

α-Conotoxins are small disulfide-rich peptides found in the venom of marine cone snails and are potent antagonists of nicotinic acetylcholine receptors (nAChRs). They are valuable pharmacological tools and have potential therapeutic applications for the treatment of chronic pain or neurological diseases and disorders. In the present study, we synthesized and functionally characterized a novel α-conotoxin Bt1.8, which was cloned from Conus betulinus. Bt1.8 selectively inhibited ACh-evoked currents in Xenopus oocytes expressing rat(r) α6/α3β2β3 and rα3β2 nAChRs with an IC of 2.1 nM and 9.4 nM, respectively, and similar potency for human (h) α6/α3β2β3 and hα3β2 nAChRs Additionally, Bt1.8 had higher binding affinity with a slower dissociation rate for the rα6/α3β2β3 subtype compared to rα3β2. The amino acid sequence of Bt1.8 is significantly different from other reported α-conotoxins targeting the two nAChR subtypes. Further Alanine scanning analyses demonstrated that residues Ile9, Leu10, Asn11, Asn12 and Asn14 are critical for its inhibitory activity at the α6/α3β2β3 and α3β2 subtypes. Moreover, the NMR structure of Bt1.8 indicated the presence of a relatively larger hydrophobic zone than other α4/7-conotoxins which may explain its potent inhibition of α6/α3β2β3 nAChRs.

Learn More >

Evaluating the Impact of Age and Inflammatory Duration on Behavioral assessments of Nociception.

Pain is a prevalent issue for elderly individuals. Unfortunately, it remains unclear how acute and chronic pain differs as a function of age, and surprisingly, there is even disagreement on how the sensory and affective dimensions of pain change with age. Therefore, the current investigation evaluated such age differences with behavioral methodology using a preclinical model of arthritis. The primary factors of interest were age and chronicity of pain using behavioral assessments designed to measure sensory and affective dimensions of pain processing. Mechanical and thermal paw withdrawal thresholds demonstrated unique outcomes associated with sensory processing across age. The processing of pain affect measured by the Place Escape/Avoidance Paradigm (PEAP testing) also demonstrated age related effects. Overall, younger animals appeared more sensitive to nociceptive stimuli than older animals. However, the results from the current study suggest that chronicity of pain can be impactful for how older animals process pain related affect and avoidance. The finding of unique patterns of pain across age and duration of pain highlights the clinical literature. Future research should aim to elucidate mechanisms for affective processing of chronic pain in older subjects.

Learn More >

Remifentanil self-administration in mice promotes sex-specific prefrontal cortex dysfunction underlying deficits in cognitive flexibility.

Opioid-based drugs are frequently used for pain management in both males and females despite the known risk of prefrontal cortex dysfunction and cognitive impairments. Although poorly understood, loss of cognitive control following chronic drug use has been linked to decreased activation of frontal cortex regions. Here, we show that self-administration of the potent opioid, remifentanil, causes a long-lasting hypoactive basal state evidenced by a decrease in ex vivo excitability that is paralleled by an increase in firing capacity of layer 5/6 pyramidal neurons in the prelimbic, but not infralimbic region of the medial prefrontal cortex. This phenomenon was observed in females after as few as 5 days and up to 25-30 days of self-administration. In contrast, pyramidal neurons in males showed increased excitability following 10-16 days of self-administration, with hypoactive states arising only following 25-30 days of self-administration. The emergence of a hypoactive, but not hyperactive basal state following remifentanil self-administration aligned with deficits in cognitive flexibility as assessed using an operant-based attentional set-shifting task. In females, the hypoactive basal state is driven by a reduction in excitatory synaptic transmission mediated by AMPA-type glutamate receptors. Alternatively, hyper- and hypoactive states in males align selectively with decreased and increased GABA signaling, respectively. Chemogenetic compensation for this hypoactive state prior to testing restored cognitive flexibility, basal hypoactive state, and remifentanil-induced plasticity. These data define cellular and synaptic mechanisms by which opioids impair prefrontal function and cognitive control; indicating that interventions aimed at targeting opioid-induced adaptations should be tailored based on biological sex.

Learn More >

Nociceptive sensory neurons promote CD8 T cell responses to HSV-1 infection.

Host protection against cutaneous herpes simplex virus 1 (HSV-1) infection relies on the induction of a robust adaptive immune response. Here, we show that Nav sensory neurons, which are involved in pain perception, control the magnitude of CD8 T cell priming and expansion in HSV-1-infected mice. The ablation of Nav-expressing sensory neurons is associated with extensive skin lesions characterized by enhanced inflammatory cytokine and chemokine production. Mechanistically, Nav sensory neurons are required for the downregulation of neutrophil infiltration in the skin after viral clearance to limit the severity of tissue damage and restore skin homeostasis, as well as for eliciting robust CD8 T cell priming in skin-draining lymph nodes by controlling dendritic cell responses. Collectively, our data reveal an important role for the sensory nervous system in regulating both innate and adaptive immune responses to viral infection, thereby opening up possibilities for new therapeutic strategies.

Learn More >

CCL2/CCR2 Contributes to the Altered Excitatory-inhibitory Synaptic Balance in the Nucleus Accumbens Shell Following Peripheral Nerve Injury-induced Neuropathic Pain.

The medium spiny neurons (MSNs) in the nucleus accumbens (NAc) integrate excitatory and inhibitory synaptic inputs and gate motivational and emotional behavior output. Here we report that the relative intensity of excitatory and inhibitory synaptic inputs to MSNs of the NAc shell was decreased in mice with neuropathic pain induced by spinal nerve ligation (SNL). SNL increased the frequency, but not the amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs), and decreased both the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in the MSNs. SNL also decreased the paired-pulse ratio (PPR) of evoked IPSCs but increased the PPR of evoked EPSCs. Moreover, acute bath application of C-C motif chemokine ligand 2 (CCL2) increased the frequency and amplitude of sIPSCs and sEPSCs in the MSNs, and especially strengthened the amplitude of N-methyl-D-aspartate receptor (NMDAR)-mediated miniature EPSCs. Further Ccl2 overexpression in the NAc in vivo decreased the peak amplitude of the sEPSC/sIPSC ratio. Finally, Ccr2 knock-down improved the impaired induction of NMDAR-dependent long-term depression (LTD) in the NAc after SNL. These results suggest that CCL2/CCR2 signaling plays a role in the integration of excitatory/inhibitory synaptic transmission and leads to an increase of the LTD induction threshold at the synapses of MSNs during neuropathic pain.

Learn More >

ß2-Arrestin germline knockout does not attenuate opioid respiratory depression.

Opioids are perhaps the most effective analgesics in medicine. However, between 1999 to 2018, over 400,000 people in the United States died from opioid overdose. Excessive opioids make breathing lethally slow and shallow, a side-effect called opioid induced respiratory depression. This doubled-edged sword has sparked the desire to develop novel therapeutics that provide opioid-like analgesia without depressing breathing. One such approach has been the design of so-called 'biased agonists' that signal through some, but not all pathways downstream of the µ-opioid receptor (MOR), the target of morphine and other opioid analgesics. This rationale stems from a study suggesting that MOR-induced ß2-arrestin dependent signaling is responsible for opioid respiratory depression, whereas adenylyl cyclase inhibition produces analgesia. To verify this important result that motivated the 'biased agonist' approach, we re-examined breathing in ß2-arrestin deficient mice and instead find no connection between ß2-arrestin and opioid respiratory depression. This result suggests that any attenuated effect of 'biased agonists' on breathing is through an as-yet defined mechanism.

Learn More >

Oxytocin receptor activation rescues opioid-induced respiratory depression by systemic fentanyl in the rat.

Opioid overdose intervention by naloxone, a high affinity receptor antagonist, reverses opioid-induced respiratory depression (OIRD) and analgesia by displacing opioids. Systemic naloxone stimulates release of the hypothalamic neuropeptide oxytocin, which has analgesic properties and participates in cardiorespiratory homeostasis. To test the hypothesis that oxytocin can reverse OIRD, we assessed the rescue potential of graded doses (0, 0.1, 2, 5, 10, 50 nmol/kg, i.v) of oxytocin to counter fentanyl (60 nmol/kg, i.v.)-induced depression of neural inspiration indexed by recording phrenic nerve activity (PNA) in anesthetized (urethane/α-chloralose), vagotomized, and artificially ventilated rats. Oxytocin dose-dependently rescued fentanyl OIRD by almost immediately reversing PNA burst arrest (=0.0057) and restoring baseline burst frequency (=0.0016) and amplitude (=0.0025) at low, but not high doses, resulting in inverted bell-shaped dose-response curves. Oxytocin receptor antagonism (40 nmol/kg, i.v.) prevented oxytocin reversal of OIRD (Arrest: =0.0066, Frequency: =0.0207, Amplitude: =0.0022). Vasopressin 1A receptor (V1aR) antagonism restored high-dose oxytocin efficacy to rescue OIRD (=0.0170 – <0.0001), resulting in classic sigmoidal dose-response curves, and prevented (=0.0135) transient hypertension from V1aR cross-activation (=0.0275). Alone, vasopressin (5 nmol/kg, i.v.) failed to reverse fentanyl respiratory arrest (=0.6184). The non-peptide oxytocin receptor agonist WAY-267464 (75 nmol/kg, i.v.), which has V1aR antagonist properties, quickly reversed fentanyl OIRD (<0.0001), with rapid recovery of PNA frequency (=0.0011) and amplitude (=0.0044) without adverse hemodynamic consequences (=0.9991). Findings indicate that peptide and non-peptide agonist activation of oxytocin receptors without V1aR cross-activation rescues fentanyl OIRD. Oxytocin receptor agonists could be lifesaving resuscitation agents that enhance rather than interrupt opioid analgesia. Oxytocin receptor activation produces analgesia. Here, we demonstrate that activation by the FDA-approved agonist oxytocin and the non-peptide partial agonist WAY-267464 can each reverse fentanyl cardiorespiratory depression. Selective targeting of oxytocin receptors for resuscitation from opioid overdose, alone or in combination with an opioid antagonist, could eliminate or attenuate negative side effects associated with traditional opioid receptor antagonism.

Learn More >

Inhibition of inflammatory pain and cough by a novel charged sodium channel blocker.

Many pain-triggering nociceptor neurons express TRPV1 or TRPA1, cation-selective channels with large pores that enable permeation of QX-314, a cationic analogue of lidocaine. Co-application of QX-314 with TRPV1 or TRPA1 activators can silence nociceptors. In this study, we describe BW-031, a novel more potent cationic sodium channel inhibitor, test whether its application alone can inhibit pain associated with tissue inflammation, and whether this strategy can also inhibit cough.

Learn More >

Search