I am a
Home I AM A Search Login

Animal Studies

Share this

Decoding Neuropathic Pain: Can We Predict Fluctuations of Propagation Speed in Stimulated Peripheral Nerve?

To understand neural encoding of neuropathic pain, evoked and resting activity of peripheral human C-fibers are studied microneurography experiments. Before different spiking patterns can be analyzed, spike sorting is necessary to distinguish the activity of particular fibers of a recorded bundle. Due to single-electrode measurements and high noise contamination, standard methods based on spike shapes are insufficient and need to be enhanced with additional information. Such information can be derived from the activity-dependent slowing of the fiber propagation speed, which in turn can be assessed by introducing continuous "background" 0.125-0.25 Hz electrical stimulation and recording the corresponding responses from the fibers. Each fiber's speed propagation remains almost constant in the absence of spontaneous firing or additional stimulation. This way, the responses to the "background stimulation" can be sorted by fiber. In this article, we model the changes in the propagation speed resulting from the history of fiber activity with polynomial regression. This is done to assess the feasibility of using the developed models to enhance the spike shape-based sorting. In addition to human microneurography data, we use animal recordings with a similar stimulation protocol as higher signal-to-noise ratio data example for the models.

Learn More >

Long Non-Coding RNA and mRNA Profiles in the Spinal Cord of Rats with Resiniferatoxin-Induced Neuropathic Pain.

The ultrapotent transient receptor potential vanilloid 1 (TRPV1) agonist resiniferatoxin (RTX) induces small-fiber sensory neuropathy, which has been widely used model of postherpetic neuralgia to study mechanisms of neuropathic pain and new analgesics. The long non-coding RNA (lncRNA) and mRNA expression profiles in spinal dorsal horn tissues of rats six weeks after RTX injection to identify new RNAs related to neuropathic pain.

Learn More >

Involvement of Histone Lysine Crotonylation in the Regulation of Nerve-Injury-Induced Neuropathic Pain.

Histone lysine crotonylation (KCR), a novel epigenetic modification, is important in regulating a broad spectrum of biological processes and various diseases. However, whether KCR is involved in neuropathic pain remains to be elucidated. We found KCR occurs in macrophages, sensory neurons, and satellite glial cells of trigeminal ganglia (TG), neurons, astrocytes, and microglia of the medulla oblongata. KCR in TG was detected mainly in small and medium sensory neurons, to a lesser extent in large neurons. Peripheral nerve injury elevated KCR levels in macrophages in the trigeminal and dorsal root ganglia and microglia in the medulla oblongata but reduced KCR levels in sensory neurons. Inhibition of histone crotonyltransferases (p300) by intra-TG or intrathecal administration of C646 significantly alleviated partial infraorbital nerve transection (pIONT)- or spinal nerve ligation (SNL)-induced mechanical allodynia and thermal hyperalgesia. Intra-TG or intrathecal administration of Crotonyl coenzyme A trilithium salt to upregulate KCR dose-dependently induced mechanical allodynia and thermal hyperalgesia in mice. Mechanismly, inhibition of p300 alleviated pIONT-induced macrophage activation and reduced the expression of pain-related inflammatory cytokines , and chemokines and . Correspondingly, exogenous crotonyl-CoA induced macrophage activation and the expression of , , , and in TG, which C646 can repress. These findings suggest that might be functionally involved in neuropathic pain and neuroinflammation regulation.

Learn More >

Coenzyme Q10 encapsulated in micelles ameliorates osteoarthritis by inhibiting inflammatory cell death.

Osteoarthritis (OA) is the most common degenerative joint disease and is characterized by breakdown of joint cartilage. Coenzyme Q10 (CoQ10) exerts diverse biological effects on bone and cartilage; observational studies have suggested that CoQ10 may slow OA progression and inflammation. However, any effect of CoQ10 on OA remains unclear. Here, we investigated the therapeutic utility of CoQ10-micelles.

Learn More >

Efficacy of Combination Therapy with Pregabalin in Neuropathic Pain: A Preclinical Study in the Rat L5 Spinal Nerve Ligation Model.

Neuropathic pain is sometimes difficult to manage because of limited efficacy of analgesic monotherapy even at high doses. Combination therapy may help address this issue, but there is little evidence for its effectiveness. Therefore, we evaluated the efficacy of combination therapy with pregabalin, an anchor drug for treating neuropathic pain, using the rat L5 spinal nerve ligation model.

Learn More >

Inhibition of angiogenetic macrophages reduces disc degeneration-associated pain.

Abnormal angiogenesis and innervation in avascular discs during lumbar disc degeneration (LDD) cause severe back pain. These pathological alterations in the degenerating discs are induced by cytokines partially produced and secreted by inflammatory cells, among which macrophages are the most frequently ones detected at the legion site. However, the role of macrophages as well as their polarization in regulation of innervation and angiogenesis in the degenerating discs is unclear. In this study, we analyzed macrophages in the degenerating discs from patients and detected a specific macrophage subtype that expresses high levels of vascular endothelial growth factor A (VEGF-A). Co-expression of M2 macrophage markers in this macrophage subtype suggested that they were a M2d-like subtype. High levels of VEGF-A and genes associated with angiogenesis were also detected in LDD specimens compared to control heathy discs from a public database, consistent with our finding. Moreover, the levels of VEGF-A in disc macrophages were strongly correlated to the pain score of the examined patients, but not to the Thompson classification of the degeneration level of the patients. , overexpressing VEGF-A in macrophages increased the tube formation, proliferation and migration of co-cultured endothelial cells, and increased the innervation of embryonic spinal cord explant into the co-cultured area for macrophages and skeletal myocytes. , an orthotopic injection of adeno-associated virus carrying siRNA for VEGF-A under a macrophage-specific CD68 promoter significantly reduced the number of VEGF-A-positive disc macrophages and alleviated the pain in LDD-mice. Together, these data suggest that inhibition of angiogenetic potential of macrophages may reduce disc degeneration-associated pain through suppression of angiogenesis and innervation, as a promising therapy for LDD-associated pain.

Learn More >

Altered expression of vesicular glutamate transporter-2 and cleaved caspase-3 in the locus coeruleus of nerve-injured rats.

Neuropathic pain is a debilitating chronic condition provoked by a lesion in the nervous system and it induces functional alterations to the noradrenergic locus coeruleus (LC), affecting distinct dimensions of pain, like sensorial hypersensitivity, pain-induced depression, and anxiety. However, the neurobiological changes induced by nerve damage in the LC remain unclear. Here, we analyzed excitatory and inhibitory inputs to the LC, as well as the possible damage that noradrenergic neurons suffer after the induction of neuropathic pain through chronic constriction injury (CCI). Neuropathic pain was induced in male Sprague-Dawley rats, and the expression of the vesicular glutamate transporter 1 or 2 (VGLUT1 or VGLUT2), vesicular GABA transporter (VGAT), and cleaved caspase-3 (CC3) was analyzed by immunofluorescence 7 (CCI7d) or 28 days after the original lesion (CCI28d). While no significant differences in the density of VGLUT1 puncta were evident, CCI7d induced a significant increase in the perisomatic VGLUT2/VGAT ratio relative to Sham-operated and CCI28d animals. By contrast, when the entire region of LC is evaluated, there was a significant reduction in the density of VGLUT2 puncta in CCI28d animals, without changes in VGLUT2/VGAT ratio relative to the CCI7d animals. Additionally, changes in the noradrenergic soma size, and a lower density of mitochondria and lysosomes were evident in CCI28d animals. Interestingly, enhanced expression of the apoptotic marker CC3 was also evident in the CCI28d rats, mainly co-localizing with glial fibrillary acidic protein but not with any neuronal or noradrenergic marker. Overall, short-term pain appears to lead to an increase of markers of excitatory synapses in the perisomatic region of noradrenergic cells in the LC, an effect that is lost after long-term pain, which appears to activate apoptosis.

Learn More >

Microglial Engulfment of Spines in the Ventral Zona Incerta Regulates Anxiety-Like Behaviors in a Mouse Model of Acute Pain.

Although activation of microglial cells is critical in developing brain disorders, their role in anxiety-like behaviors in pain is still vague. This study indicates that alteration of microglia's neuronal spine engulfment capacity in ventral zona incerta (ZI ) leads to significant pain and anxiety-like behaviors in mice 1-day post-injection of Complete Freud's Adjuvant (CFA1D). Performing whole-cell patch-clamp recordings in GABAergic neurons in the ZI (ZI ) in brain slices, we observed decreased activity in ZIv and reduced frequency of the miniature excitatory postsynaptic currents (mEPSCs) in ZI of CFA1D mice compared with the saline1D mice. Besides, chemogenetic activation of ZI significantly relieved pain and anxiety-like behaviors in CFA1D mice. Conversely, in naïve mice, chemogenetic inhibition of ZI induced pain and anxiety-like behaviors. Interestingly, we found changes in the density and morphology of ZI and increased microglial engulfment of spines in ZI of CFA1D mice. Furthermore, pain sensitization and anxiety-like behaviors were reversed when the ZI of CFA1D-treated mice were chemically inhibited by intra-ZI minocycline injection, accompanied by the recovery of decreased ZI excitability. Conclusively, our results provide novel insights that dysregulation of microglial engulfment capacity encodes maladaptation of ZI , thus promoting the development of anxiety-like behaviors in acute pain.

Learn More >

Enhancement of P2X3 Receptor-Mediated Currents by Lysophosphatidic Acid in Rat Primary Sensory Neurons.

Lysophosphatidic acid (LPA), a lipid metabolite, plays a role in both neuropathic and inflammatory pain through LPA receptors. P2X3 receptor has also been shown to participate in these pathological processes. However, it is still unclear whether there is a link between LPA signaling and P2X3 receptors in pain. Herein, we show that a functional interaction between them in rat dorsal root ganglia (DRG) neurons. Pretreatment of LPA concentration-dependently enhanced α,β-methylene-ATP (α,β-meATP)-induced inward currents mediated by P2X3 receptors. LPA significantly increased the maximal current response of α,β-meATP, showing an upward shift of the concentration-response curve for α,β-meATP. The LPA enhancement was independent on the clamping-voltage. Enhancement of P2X3 receptor-mediated currents by LPA was prevented by the LPA receptor antagonist Ki16198, but not by the LPA receptor antagonist H2L5185303. The LPA-induced potentiation was also attenuated by intracellular dialysis of either G-protein inhibitor or protein kinase C (PKC) inhibitor, but not by Rho inhibitor. Moreover, LPA significantly changed the membrane potential depolarization and action potential burst induced by α,β-meATP in DRG neurons. Finally, LPA exacerbated α,β-meATP- induced nociceptive behaviors in rats. These results suggested that LPA potentiated the functional activity of P2X3 receptors in rat primary sensory neurons through activation of the LPA receptor and its downstream PKC rather than Rho signaling pathway, indicating a novel peripheral mechanism underlying the sensitization of pain.

Learn More >

Votucalis, a Novel Centrally Sparing Histamine-Binding Protein, Attenuates Histaminergic Itch and Neuropathic Pain in Mice.

Votucalis is a biologically active protein in tick () saliva, which specifically binds histamine with high affinity and, therefore, has the potential to inhibit the host's immunological responses at the feeding site. We hypothesized that scavenging of peripherally released endogenous histamine by Votucalis results in both anti-itch and anti-nociceptive effects. To test this hypothesis, adult male mice were subjected to histaminergic itch, as well as peripheral nerve injury that resulted in neuropathic pain. Thus, we selected models where peripherally released histamine was shown to be a key regulator. In these models, the animals received systemic (intraperitoneal, i.p.) or peripheral transdermal (subcutaneous, s.c. or intraplantar, i.pl.) administrations of Votucalis and itch behavior, as well as mechanical and thermal hypersensitivity, were evaluated. Selective histamine receptor antagonists were used to determine the involvement of histamine receptors in the effects produced by Votucalis. We also used the spontaneous object recognition test to confirm the centrally sparing properties of Votucalis. Our main finding shows that in histamine-dependent itch and neuropathic pain models peripheral (s.c. or i.pl.) administration of Votucalis displayed a longer duration of action for a lower dose range, when compared with Votucalis systemic (i.p.) effects. Stronger anti-itch effect was observed after co-administration of Votucalis (s.c.) and antagonists that inhibited peripheral histamine H and H receptors as well as central histamine H receptors indicating the importance of these histamine receptors in itch. In neuropathic mice, Votucalis produced a potent and complete anti-nociceptive effect on mechanical hypersensitivity, while thermal (heat) hypersensitivity was largely unaffected. Overall, our findings further emphasize the key role for histamine in the regulation of histaminergic itch and chronic neuropathic pain. Given the effectiveness of Votucalis after peripheral transdermal administration, with a lack of central effects, we provide here the first evidence that scavenging of peripherally released histamine by Votucalis may represent a novel therapeutically effective and safe long-term strategy for the management of these refractory health conditions.

Learn More >

Search