I am a
Home I AM A Search Login

Animal Studies

Share this

Sex Differences in the Amygdaloid Projections to the Ventrolateral Periaqueductal Gray and Their Activation During Inflammatory Pain in the Rat.

Preclinical and clinical studies have reported sex differences in pain and analgesia. These differences may be linked to anatomical structures of the central nervous system pain modulatory circuitry, and/or hormonal milieu. The midbrain periaqueductal gray is a critical brain region for descending inhibition of pain. The PAG projects to the rostral ventromedial medulla (RVM), which projects bilaterally to the spinal cord to inhibit pain. In addition to pain, this descending circuit (or pathway) can be engaged by endogenous opioids (i.e., endorphins) or exogenous opioids (i.e., morphine), and we have previously reported sex differences in the activation of this circuit during pain and analgesia. Forebrain structures, including the amygdala, project to and engage the PAG-RVM circuit during persistent inflammatory pain. However, there are limited studies in females detailing this amygdalar-PAG pathway and its involvement during persistent inflammatory pain. The objective of the present study was to delineate the neural projections from the amygdala to the PAG in male and female rats to determine if they are sexually distinct in their anatomical organization. We also examined the activation of this pathway by inflammatory pain and the co-localization of receptors for estrogen. Injection of the retrograde tracer fluorogold (FG) into the ventrolateral PAG (vlPAG) resulted in dense retrograde labeling in both the central amygdala (CeA) and medial amygdala (MeA). While the number of CeA-vlPAG neurons were comparable between the sexes, there were more MeA-vlPAG neurons in females. Inflammatory pain resulted in greater activation of the amygdala in males; however, females displayed higher Fos expression within CeA-vlPAG projection neurons. Females expressed higher ERα in the MeA and CeA and the same was true of the projection neurons. Together, these data indicate that although the MeA-vlPAG projections are denser in females, inflammatory pain does not significantly activate these projections. In contrast, inflammatory pain resulted in a greater activation of the CeA-vlPAG pathway in females. As females experience a greater number of chronic pain syndromes, the CeA-vlPAG pathway may play a facilitatory (and not inhibitory) role in pain modulation.

Learn More >

High-mobility group box 1-mediated hippocampal microglial activation induces cognitive impairment in mice with neuropathic pain.

Clinical evidence indicates that cognitive impairment is a common comorbidity of chronic pain, including neuropathic pain, but the mechanism underlying cognitive impairment remains unclear. Neuroinflammation plays a critical role in the development of both neuropathic pain and cognitive impairment. High-mobility group box 1 (HMGB1) is a proinflammatory molecule and could be involved in neuroinflammation-mediated cognitive impairment in the neuropathic pain state. Hippocampal microglial activation in mice has been associated with cognitive impairment. Thus, the current study examined a potential role of HMGB1 and microglial activation in cognitive impairment in mice with neuropathic pain due to a partial sciatic nerve ligation (PSNL). Mice developed cognitive impairment over two weeks, but not one week, after nerve injury. Nerve-injured mice demonstrated decreased nuclear fraction HMGB1, suggesting increased extracellular release of HMGB1. Furthermore, two weeks after PSNL, significant microglia activation was observed in hippocampus. Inhibition of microglial activation with minocycline, local hippocampal microglia depletion with clodronate liposome, or blockade of HMGB1 with either glycyrrhizic acid (GZA) or anti-HMGB1 antibody in PSNL mice reduced hippocampal microglia activation and ameliorated cognitive impairment. Other changes in the hippocampus of PSNL mice potentially related to cognitive impairment, including decreased hippocampal neuron dendrite length and spine densities and decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor (AMPAR) subunits, were prevented with anti-HMGB1 antibody treatment. The current findings suggest that neuro-inflammation involves a number of cellular-level changes and microglial activation. Blocking neuro-inflammation, particularly through blocking HMGB1 could be a novel approach to reducing co-morbidities such as cognitive impairment associated with neuropathic pain.

Learn More >

GPR15L is an epithelial inflammation-derived pruritogen.

Itch is an unpleasant sensation that often accompanies chronic dermatological conditions. Although many of the itch receptors and the neural pathways underlying this sensation are known, the identity of endogenous ligands is still not fully appreciated. Using an unbiased bioinformatic approach, we identified GPR15L as a candidate pruritogen whose expression is robustly up-regulated in psoriasis and atopic dermatitis. Although GPR15L was previously shown to be a cognate ligand of the receptor GPR15, expressed in dermal T cells, here we show that it also contributes to pruritogenesis by activating Mas-related G protein-coupled receptors (MRGPRs). GPR15L can selectively stimulate mouse dorsal root ganglion neurons that express Mrgpra3 and evokes intense itch responses. GPR15L causes mast cell degranulation through stimulation of MRGPRX2 and Mrgprb2. Genetic disruption of GPR15L expression attenuates scratch responses in a mouse model of psoriasis. Our study reveals unrecognized features of GRP15L, showing that it is a potent itch-inducing agent.

Learn More >

Formulated Curcumin Prevents Paclitaxel-Induced Peripheral Neuropathy through Reduction in Neuroinflammation by Modulation of α7 Nicotinic Acetylcholine Receptors.

Paclitaxel is widely used in the treatment of various types of solid malignancies. Paclitaxel-induced peripheral neuropathy (PIPN) is often characterized by burning pain, cold, and mechanical allodynia in patients. Currently, specific pharmacological treatments against PIPN are lacking. Curcumin, a polyphenol of Curcuma longa, shows antioxidant, anti-inflammatory, and neuroprotective effects and has recently shown efficacy in the mitigation of various peripheral neuropathies. Here, we tested, for the first time, the therapeutic effect of 1.5% dietary curcumin and Meriva (a lecithin formulation of curcumin) in preventing the development of PIPN in C57BL/6J mice. Curcumin or Meriva treatment was initiated one week before injection of paclitaxel and continued throughout the study (21 days). Mechanical and cold sensitivity as well as locomotion/motivation were tested by the von Frey, acetone, and wheel-running tests, respectively. Additionally, sensory-nerve-action-potential (SNAP) amplitude by caudal-nerve electrical stimulation, electronic microscopy of the sciatic nerve, and inflammatory-protein quantification in DRG and the spinal cord were measured. Interestingly, a higher concentration of curcumin was observed in the spinal cord with the Meriva diet than the curcumin diet. Our results showed that paclitaxel-induced mechanical hypersensitivity was partially prevented by the curcumin diet but completely prevented by Meriva. Both the urcumin diet and the Meriva diet completely prevented cold hypersensitivity, the reduction in SNAP amplitude and reduced mitochondrial pathology in sciatic nerves observed in paclitaxel-treated mice. Paclitaxel-induced inflammation in the spinal cord was also prevented by the Meriva diet. In addition, an increase in α7 nAChRs mRNA, known for its anti-inflammatory effects, was also observed in the spinal cord with the Meriva diet in paclitaxel-treated mice. The use of the α7 nAChR antagonist and α7 nAChR KO mice showed, for the first time in vivo, that the anti-inflammatory effects of curcumin in peripheral neuropathy were mediated by these receptors. The results presented in this study represent an important advance in the understanding of the mechanism of action of curcumin in vivo. Taken together, our results show the therapeutic potential of curcumin in preventing the development of PIPN and further confirms the role of α7 nAChRs in the anti-inflammatory effects of curcumin.

Learn More >

Unraveling the role of Epac1-SOCS3 signaling in the development of neonatal-CRD-induced visceral hypersensitivity in rats.

Visceral hypersensitivity in irritable bowel syndrome (IBS) is widespread, but effective therapies for it remain elusive. As a canonical anti-inflammatory protein, suppressor of cytokine signaling 3 (SOCS3) reportedly relays exchange protein 1 directly activated by cAMP (Epac1) signaling and inhibits the intracellular response to inflammatory cytokines. Despite the inhibitory effect of SOCS3 on the pro-inflammatory response and neuroinflammation in PVN, the systematic investigation of Epac1-SOCS3 signaling involved in visceral hypersensitivity remains unknown. This study aimed to explore Epac1-SOCS3 signaling in the activity of hypothalamic paraventricular nucleus (PVN) corticotropin-releasing factor (CRF) neurons and visceral hypersensitivity in adult rats experiencing neonatal colorectal distension (CRD).

Learn More >

TRPV1 SUMOylation suppresses itch by inhibiting TRPV1 interaction with H1 receptors.

The molecular mechanism underlying the functional interaction between H1R and TRPV1 remains unclear. We show here that H1R directly binds to the carboxy-terminal region of TRPV1 at residues 715-725 and 736-749. Cell-penetrating peptides containing these sequences suppress histamine-induced scratching behavior in a cheek injection model. The H1R-TRPV1 binding is kept at a minimum at rest in mouse trigeminal neurons due to TRPV1 SUMOylation and it is enhanced upon histamine treatment through a transient TRPV1 deSUMOylation. The knockin of the SUMOylation-deficient TRPV1 mutant in mice leads to constitutive enhancement of H1R-TRPV1 binding, which exacerbates scratching behaviors induced by histamine. Conversely, SENP1 conditional knockout in sensory neurons enhances TRPV1 SUMOylation and suppresses the histamine-induced scratching response. In addition to interfering with binding, TRPV1 SUMOylation promotes H1R degradation through ubiquitination. Our work unveils the molecular mechanism of histaminergic itch by which H1R directly binds to deSUMOylated TRPV1 to facilitate the transduction of the pruritogen signal to the scratching response.

Learn More >

Spinal TRPA1 Contributes to the Mechanical Hypersensitivity Effect Induced by Netrin-1.

Netrin-1, a chemoattractant expressed by floor plate cells, and one of its receptors (deleted in colorectal cancer) has been associated with pronociceptive actions in a number of pain conditions. Here, we addressed the question of whether spinal TRPC4/C5 or TRPA1 are among the downstream receptors contributing to pronociceptive actions induced by netrin-1. The experiments were performed on rats using a chronic intrathecal catheter for administration of netrin-1 and antagonists of TRPC4/C5 or TRPA1. Pain sensitivity was assessed behaviorally by using mechanical and heat stimuli. Effect on the discharge rate of rostral ventromedial medullary (RVM) pain control neurons was studied in lightly anesthetized animals. Netrin-1, in a dose-related fashion, induced mechanical hypersensitivity that lasted up to three weeks. Netrin-1 had no effect on heat nociception. Mechanical hypersensitivity induced by netrin-1 was attenuated by TRPA1 antagonist Chembridge-5861528 and by the control analgesic compound pregabalin both during the early (first two days) and late (third week) phase of hypersensitivity. TRPC4/C5 antagonist ML-204 had a weak antihypersensitivity effect that was only in the early phase, whereas TRPC4/C5 antagonist HC-070 had no effect on hypersensitivity induced by netrin-1. The discharge rate in pronociceptive ON-like RVM neurons was increased by netrin-1 during the late but not acute phase, whereas netrin-1 had no effect on the discharge rate of antinociceptive RVM OFF-like neurons. The results suggest that spinal TRPA1 receptors and pronociceptive RVM ON-like neurons are involved in the maintenance of submodality-selective pronociceptive actions induced by netrin-1 in the spinal cord.

Learn More >

MiR-106b-5p Attenuates Neuropathic Pain by Regulating the P2X4 Receptor in the Spinal Cord in Mice.

The P2X4 receptor (P2X4R) can be upregulated after nerve injury, and its mediated spinal microglial activation makes a critical contribution to pathologically enhanced pain processing in the dorsal horn. Although some studies have partly clarified the mechanism underlying altered P2X4R expression, the specific mechanism is not well understood. MicroRNAs (miRNAs) are small noncoding RNAs which control gene expression by binding with their target mRNAs. Thus, in the present study, we investigated whether miRNA is involved in the pathogenesis of neuropathic pain by regulating P2X4R. Our results showed that P2X4R was upregulated in the spinal dorsal horn of mice following spared nerve injury (SNI), and 69 miRNAs (46 upregulated and 23 downregulated miRNAs) were differentially expressed (fold change > 2.0, P < 0.05). P2X4R was found to be a major target of miR-106b-5p (one of the downregulated miRNAs) using bioinformatics technology; quantitative real-time PCR analysis confirmed the change in expression of miR-106b-5p, and dual-luciferase reporter assays confirmed the correlation between them. Fluorescence in situ hybridization was used to show cell co-localization of P2X4R and miR-106b-5p in the spinal dorsal horn. Transfection with miR-106b-5p mimic into BV2 cells reversed the upregulation of P2X4R induced by lipopolysaccharide (LPS). Moreover, miR-106b-5p overexpression significantly attenuated neuropathic pain induced by SNI, with decreased expression of P2X4R mRNA and protein in the spinal dorsal horn; intrathecal miR-106b-5p antagomir induced pain behaviors, and increased expression of P2X4R in the spinal dorsal horn of naïve mice. These data suggest that miR-106b-5p can serve as an important regulator of neuropathic pain development by targeting P2X4R.

Learn More >

Systemic DNA/RNA heteroduplex oligonucleotide administration for regulating the gene expression of dorsal root ganglion and sciatic nerve.

Neuropathic pain, a heterogeneous condition, affects 7%-10% of the general population. To date, efficacious and safe therapeutic approaches remain limited. Antisense oligonucleotide (ASO) therapy has opened the door to treat spinal muscular atrophy, with many ongoing clinical studies determining its therapeutic utility. ASO therapy for neuropathic pain and peripheral nerve disease requires efficient gene delivery and knockdown in both the dorsal root ganglion (DRG) and sciatic nerve, key tissues for pain signaling. We previously developed a new DNA/RNA heteroduplex oligonucleotide (HDO) technology that achieves highly efficient gene knockdown in the liver. Here, we demonstrated that intravenous injection of HDO, comprising an ASO and its complementary RNA conjugated to α-tocopherol, silences endogenous gene expression more than 2-fold in the DRG, and sciatic nerve with higher potency, efficacy, and broader distribution than ASO alone. Of note, we observed drastic target suppression in all sizes of neuronal DRG populations by hybridization. Our findings establish HDO delivery as an investigative and potentially therapeutic platform for neuropathic pain and peripheral nerve disease.

Learn More >

Long-lasting reflexive and nonreflexive pain responses in two mouse models of fibromyalgia-like condition.

Nociplastic pain arises from altered nociception despite no clear evidence of tissue or somatosensory system damage, and fibromyalgia syndrome can be highlighted as a prototype of this chronic pain subtype. Currently, there is a lack of effective treatments to alleviate both reflexive and nonreflexive pain responses associated with fibromyalgia condition, and suitable preclinical models are needed to assess new pharmacological strategies. In this context, although in recent years some remarkable animal models have been developed to mimic the main characteristics of human fibromyalgia, most of them show pain responses in the short term. Considering the chronicity of this condition, the present work aimed to develop two mouse models showing long-lasting reflexive and nonreflexive pain responses after several reserpine (RIM) or intramuscular acid saline solution (ASI) injections. To our knowledge, this is the first study showing that RIM6 and ASI mouse models show reflexive and nonreflexive responses up to 5-6 weeks, accompanied by either astro- or microgliosis in the spinal cord as pivotal physiopathology processes related to such condition development. In addition, acute treatment with pregabalin resulted in reflexive pain response alleviation in both the RIM6 and ASI models. Consequently, both may be considered suitable experimental models of fibromyalgia-like condition, especially RIM6.

Learn More >

Search