I am a
Home I AM A Search Login

Animal Studies

Share this

A possible mechanism for development of working memory impairment in male mice subjected to inflammatory pain.

We studied the effects of inflammatory pain on working memory and correlated the pain effects with changes in dendritic spine density and glutamate signaling in the medial prefrontal cortex (mPFC) of male and female mice. Injection of Complete Freund's Adjuvant (CFA) into the hind paw modeled inflammatory pain. The CFA equally decreased the mechanical thresholds in both sexes. The density of dendritic spines, as a marker for neuronal input, increased on the dendrites of both, pyramidal cells and interneurons in males but only on the dendrites of interneurons in CFA injected females. Next, we injected virus with glutamate sensor (pAAV.hSyn.iGluSnFr) into the mPFC and used fiber photometry to record glutamate signaling during Y-maze spontaneous alternations test, which is a test for working memory in rodents. The detected fluorescent signal was higher during correct alternations when compared to incorrect alternations in both sexes. The CFA injection did not change the pattern of glutamate fluorescence during the test but the female mice made fewer incorrect alternations than their male counterparts. Furthermore, while the CFA injection decreased the expression of the glutamate transporter VGlut1 on the soma of mPFC neurons in both sexes, the decrease was sex dependent. We concluded that inflammatory pain, which increases sensory input into the mPFC neurons, may impair working memory by altering the glutamate signaling. The glutamate deficit that develops as a result of the pain is more pronounced in male mice in comparison to female mice.

Learn More >

PD-1/PD-L1 inhibition enhances chemotherapy-induced neuropathic pain by suppressing neuroimmune antinociceptive signaling.

Cytotoxic agents synergize with immune checkpoint inhibitors and improve outcomes for patients with several cancer types. Nonetheless, a parallel increase in the incidence of dose-limiting side effects, such as peripheral neuropathy, is often observed. Here, we investigated the role of the PD-1/PD-L1 axis in the modulation of paclitaxel-induced neuropathic pain. We found that human and mouse neural tissues, including the dorsal root ganglion (DRG), expressed basal levels of PD-1 and PD-L1. During the development of paclitaxel-induced neuropathy, an increase in PD-L1 expression was observed in macrophages from the DRG. This effect depended on Toll-like receptor 4 (TLR4) activation by paclitaxel. Furthermore, PD-L1 inhibited pain behavior triggered by paclitaxel or formalin in mice, suggesting that PD-1/PD-L1 signaling attenuates peripheral neuropathy development. Consistent with this, we observed that the combined use of anti-PD-L1 plus paclitaxel increased mechanical allodynia and chronic neuropathy development induced by single agents. This effect was associated with higher expression of inflammatory markers (Tnf, Il6, and Cx3cr1) in peripheral nervous tissue. Together, these results suggest that PD-1/PD-L1 inhibitors enhance paclitaxel-induced neuropathic pain by suppressing PD-1/PD-L1 antinociceptive signaling.

Learn More >

Microglial responses and pain behaviors are exacerbated by chronic sleep deprivation in rats with chronic pain via neuroinflammatory pathways.

The inflammatoryresponse of centralnervoussystem (CNS) and microglial activation is important in the development of pain behaviors induced by sleep deprivation. We found that chronic sleep deprivation (CSD) aggravated pain behaviors in rats with chronic pain by upregulating expression of Toll-like receptor 4 (TLR4), NOD-like receptor pyrin domain containing 3 (NLRP3), and interleukin 1β (IL-1β), which promoted microglial activation in the brain. We also found that CSD increased numbers of Iba1 and TLR4 cells, as well as neuronal apoptosis. Inhibitors of TLR4 and NLRP3 (TAK-242 and MCC950, respectively) reduced expression levels of inflammatory factor proteins and M1-related factor mRNA, decreased microglial activation, and relieved the hyperalgesia caused by CSD. These results suggest that CSD aggravated pain behavior in rats with chronic pain through the TLR4/NLRP3/IL-1β signaling pathway, which mediates microglial activation and promotes CNS inflammation and neuronal apoptosis.

Learn More >

A 2022 Systematic Review and Meta-Analysis of Enriched Therapeutic Diets and Nutraceuticals in Canine and Feline Osteoarthritis.

With osteoarthritis being the most common degenerative disease in pet animals, a very broad panel of natural health products is available on the market for its management. The aim of this systematic review and meta-analysis, registered on PROSPERO (CRD42021279368), was to test for the evidence of clinical analgesia efficacy of fortified foods and nutraceuticals administered in dogs and cats affected by osteoarthritis. In four electronic bibliographic databases, 1578 publications were retrieved plus 20 additional publications from internal sources. Fifty-seven articles were included, comprising 72 trials divided into nine different categories of natural health compound. The efficacy assessment, associated to the level of quality of each trial, presented an evident clinical analgesic efficacy for omega-3-enriched diets, omega-3 supplements and cannabidiol (to a lesser degree). Our analyses showed a weak efficacy of collagen and a very marked non-effect of chondroitin-glucosamine nutraceuticals, which leads us to recommend that the latter products should no longer be recommended for pain management in canine and feline osteoarthritis.

Learn More >

Neuronally expressed PDL1, not PD1, suppresses acute nociception.

PDL1 is a protein that induces immunosuppression by binding to PD1 expressed on immune cells. In line with historical studies, we found that membrane-bound PD1 expression was largely restricted to immune cells; PD1 was not detectable at either the mRNA or protein level in peripheral neurons using single neuron qPCR, immunolabeling and flow cytometry. However, we observed widespread expression of PDL1 in both sensory and sympathetic neurons that could have important implications for patients receiving immunotherapies targeting this pathway that include unexpected autonomic and sensory related effects. While signaling pathways downstream of PD1 are well established, little to no information is available regarding the intracellular signaling downstream of membrane-bound PDL1 (also known as reverse signaling). Here, we administered soluble PD1 to engage neuronally expressed PDL1 and found that PD1 significantly reduced nocifensive behaviors evoked by algogenic capsaicin. We used calcium imaging to examine the underlying neural mechanism of this reduction and found that exogenous PD1 diminished TRPV1-dependent calcium transients in dissociated sensory neurons. Furthermore, we observed a reduction in membrane expression of TRPV1 following administration of PD1. Exogenous PD1 had no effect on pain-related behaviors in sensory neuron specific PDL1 knockout mice. These data indicate that neuronal PDL1 activation is sufficient to modulate sensitivity to noxious stimuli and as such, may be an important homeostatic mechanism for regulating acute nociception.

Learn More >

HDAC6 inhibition reverses cisplatin-induced mechanical hypersensitivity via tonic delta opioid receptor signaling.

Peripheral neuropathic pain induced by the chemotherapeutic cisplatin can persist for months to years after treatment. Histone deacetylase 6 (HDAC6) inhibitors have therapeutic potential for cisplatin-induced neuropathic pain since they persistently reverse mechanical hypersensitivity and spontaneous pain in rodent models. Here, we investigated the mechanisms underlying reversal of mechanical hypersensitivity in male and female mice by a two-week treatment with an HDAC6 inhibitor, administered 3 days after the last dose of cisplatin. Mechanical hypersensitivity in animals of both sexes treated with the HDAC6 inhibitor was temporarily reinstated by a single injection of the neutral opioid receptor antagonist 6β-naltrexol or the peripherally restricted opioid receptor antagonist naloxone methiodide. These results suggest that tonic peripheral opioid ligand-receptor signaling mediates reversal of cisplatin-induced mechanical hypersensitivity after treatment with an HDAC6 inhibitor. Pointing to a specific role for delta opioid receptors (DORs), expression was decreased in dorsal root ganglion neurons following cisplatin administration, but normalized after treatment with an HDAC6 inhibitor. Mechanical hypersensitivity was temporarily reinstated in both sexes by a single injection of the DOR antagonist naltrindole. Consistently, HDAC6 inhibition failed to reverse cisplatin-induced hypersensitivity when DORs were genetically deleted from advillin neurons. Mechanical hypersensitivity was also temporarily reinstated in both sexes by a single injection of a neutralizing antibody against the DOR ligand met-enkephalin. In conclusion, we reveal that treatment with an HDAC6 inhibitor induces tonic enkephalin-DOR signaling in peripheral sensory neurons to suppress mechanical hypersensitivity.Over a quarter of cancer survivors suffer from intractable painful chemotherapy-induced peripheral neuropathy (CIPN), which can last for months to years after treatment ends. HDAC6 inhibition is a novel strategy to reverse CIPN without negatively interfering with tumor growth, but the mechanisms responsible for persistent reversal are not well understood. We built on evidence that the endogenous opioid system contributes to the spontaneous, apparent resolution of pain caused by nerve damage or inflammation, referred to as latent sensitization. We show that blocking the delta opioid receptor or its ligand enkephalin unmasks CIPN in mice treated with an HDAC6 inhibitor (latent sensitization). Our work provides insight into the mechanisms by which treatment with an HDAC6 inhibitor apparently reverses CIPN.

Learn More >

Small synthetic hyaluronan disaccharide BIS014 mitigates neuropathic pain in mice.

Neuropathic pain (NP) is a challenging condition to treat, as the need for new drugs to treat NP is an unmet goal. We investigated the analgesic potential of a new sulfated disaccharide compound, named BIS014. Oral administration (p.o.) of this compound induced ameliorative effects in formalin-induced nociception and capsaicin-induced secondary mechanical hypersensitivity in mice, but also after partial sciatic nerve transection (spared nerve injury), chemotherapy (paclitaxel)-induced NP, and diabetic neuropathy induced by streptozotocin. Importantly, BIS014, at doses active on neuropathic hypersensitivity (60 mg/kg/p.o.), did not alter exploratory activity or motor coordination (in the rotarod test), unlike a standard dose of gabapentin (40 mg/kg/p.o.) which although inducing antiallodynic effects on the NP models, it also markedly decreased exploration and motor coordination. In docking and molecular dynamic simulation studies, BIS014 interacted with TRPV, a receptor involved in pain transmission where it behaved as a partial agonist. Additionally, similar to capsaicin, BIS014 increased cytosolic Ca concentration ([Ca]) in neuroblastoma cells expressing TRPV receptors; these elevations were blocked by ruthenium red. BIS014 did not block capsaicin-elicited [Ca] transients, but inhibited the increase in the firing rate of action potentials in bradykinin-sensitized dorsal root ganglion neurons stimulated with capsaicin. PERSPECTIVE: We report that the oral administration of a new sulfated disaccharide compound, named BIS014, decreases neuropathic pain from diverse etiology in mice. Unlike the comparator gabapentin, BIS014 does not induce sedation. Thus, BIS014 has the potential to become a new efficacious non-sedative oral medication for the treatment of neuropathic pain.

Learn More >

Cellular mechanisms mediating the antinociceptive effect of botulinum toxin A in a rodent model of trigeminal irritation by a foreign body.

Although numerous studies have described botulinum toxin type A (BTX-A) efficacy against trigeminal neuralgia (TN), the underlying cellular mechanisms remain unclear. We have investigated cellular mechanisms that mediate the antinociceptive effect of BTX-A in a rodent model of TN produced by compression of the trigeminal nerve root (TNR). Anesthetized male Sprague-Dawley rats were fixed in a stereotaxic instrument and compression of the TNR was then achieved with a 4% agar solution. This model produced significant mechanical allodynia and increased the expression of hypoxia-inducible factor (HIF)-1α and cytokines levels including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in the trigeminal ganglion (TG) by postoperative day (POD) 7. Single or double treatments with a high BTX-A dose (3 U/kg) led to significantly prolonged antinociceptive effects. Furthermore, a single treatment with BTX-A (3 U/kg) significantly suppressed the upregulation of HIF-1α expression and IL-1β, IL-6, and TNF-α concentrations in the TG. Intraganglionic injection of PX-12, a HIF-1α inhibitor, led to significant anti-allodynic effects and lowered the IL-1β, IL-6, and TNF-α levels in the TG. These findings indicate that the antinociceptive effect of BTX-A is mediated via HIF-1α associated cytokines modulation in the TG and is therefore a potentially relevant treatment strategy for TN. PERSPECTIVE: The antinociceptive properties of BTX-A in a rat model of trigeminal neuralgia are mediated through the regulation of the HIF-1α associated cytokine pathway in the trigeminal ganglion. BTX-A is therefore a potentially effective treatment strategy for trigeminal neuralgia.

Learn More >

Human PMSCs-derived small extracellular vesicles alleviate neuropathic pain through miR-26a-5p/Wnt5a in SNI mice model.

Mesenchymal stem cell (MSCs)-derived small Extracellular Vesicles (sEVs) are considered as a new cell-free therapy for pain caused by nerve injury, but whether human placental mesenchymal stem cell-derived sEVs relieve pain in sciatic nerve injury and its possible mechanism are still unclear. In this study, we investigated the roles of hPMSCs-derived sEVs and related mechanisms in neuropathic pain.

Learn More >

Repetitive nociceptive stimulation increases spontaneous neural activation similar to nociception-induced activity in mouse insular cortex.

Recent noninvasive neuroimaging technology has revealed that spatiotemporal patterns of cortical spontaneous activity observed in chronic pain patients are different from those in healthy subjects, suggesting that the spontaneous cortical activity plays a key role in the induction and/or maintenance of chronic pain. However, the mechanisms of the spontaneously emerging activities supposed to be induced by nociceptive inputs remain to be established. In the present study, we investigated spontaneous cortical activities in sessions before and after electrical stimulation of the periodontal ligament (PDL) by applying wide-field and two-photon calcium imaging to anesthetized GCaMP6s transgenic mice. First, we identified the sequential cortical activation patterns from the primary somatosensory and secondary somatosensory cortices to the insular cortex (IC) by PDL stimulation. We, then found that spontaneous IC activities that exhibited a similar spatiotemporal cortical pattern to evoked activities by PDL stimulation increased in the session after repetitive PDL stimulation. At the single-cell level, repetitive PDL stimulation augmented the synchronous neuronal activity. These results suggest that cortical plasticity induced by the repetitive stimulation leads to the frequent PDL stimulation-evoked-like spontaneous IC activation. This nociception-induced spontaneous activity in IC may be a part of mechanisms that induces chronic pain.

Learn More >

Search