I am a
Home I AM A Search Login

Accepted

Share this

Galanin plays a role in antinociception via binding to galanin receptors in the nucleus accumbens of rats with neuropathic pain.

Galanin and galanin receptors (GalRs) play important roles in the transmission and modulation of nociceptive information. Our previous research has shown that the expression of GalR1 is upregulated and that GalR1 activation in the nucleus accumbens (NAc) of rats with neuropathic pain has an antinociceptive effect. However, the antinociceptive role of NAc galanin in neuralgia remains unclear. The present study aimed to explore the antinociceptive effect induced by galanin in rats with neuropathic pain and the underlying mechanism. The results showed that the intra-NAc injection of galanin induced a dose-dependent increase in hindpaw withdrawal latency (HWL) to noxious thermal and mechanical stimulation in mononeuropathic rats and that this effect was stronger than that in intact rats. The intra-NAc injection of the non-selective GalR antagonist galantide reduced HWL in the rats with neuropathic pain, but there was no influence of galantide on HWL in intact rats. Moreover, galanin expression in the NAc was upregulated after sciatic nerve ligation. All of these results demonstrate that galanin plays a role in antinociception via binding to GalRs in the NAc of rats and that endogenous galanin is involved in the antinociception after peripheral nerve injury.

Learn More >

Pain Anxiety as a Mechanism Linking Pain Severity and Opioid Misuse and Disability Among Individuals With Chronic Pain.

Chronic pain affects a significant number of individuals in the United States and is associated with several negative health-related outcomes, including possibility of opioid misuse and disability. The identification of factors associated with both opioid misuse and disability is of critical public health importance, and significant research suggests that pain severity has been shown to be associated with both. Pain-related anxiety has been uniquely associated with both opioid misuse and disability, yet little research has examined pain-related anxiety as a potential mechanism linking pain severity with opioid misuse and disability.

Learn More >

Psychological therapies (remotely delivered) for the management of chronic and recurrent pain in children and adolescents.

This is the first update of a review published in 2015, Issue 1. Chronic pain is common during childhood and adolescence and is associated with negative outcomes, such as increased severity of pain, reduced function, and low mood. Psychological therapies, traditionally delivered face-to-face with a therapist, are efficacious at reducing pain intensity and disability. To address barriers to treatment access, such as distance and cost of treatment, technology is being used to deliver these psychological therapies remotely. Therapies delivered remotely, such as via the Internet, computer-based programmes, and smartphone applications, can be used to deliver treatment to children and adolescents with chronic pain.

Learn More >

Rat NaV1.7 loss-of-function genetic model: deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers.

Recapitulating human disease pathophysiology using genetic animal models is a powerful approach to enable mechanistic understanding of genotype-phenotype relationships for drug development. NaV1.7 is a sodium channel expressed in the peripheral nervous system with strong human genetic validation as a pain target. Efforts to identify novel analgesics that are non-addictive, resulted in industry exploration of a class of sulfonamide compounds that bind to the fourth voltage-sensor domain of NaV1.7. Due to sequence differences in this region, sulfonamide blockers generally are potent on human but not rat NaV1.7 channels. To test sulfonamide-based chemical matter in rat models of pain, we generated a humanized NaV1.7 rat expressing a chimeric NaV1.7 protein containing the sulfonamide-binding site of the human gene sequence as a replacement for the equivalent rat sequence. Unexpectedly, upon transcription the human insert was spliced out, resulting in a premature stop codon. Using a validated antibody, NaV1.7 protein was confirmed to be lost in the brainstem, dorsal root ganglia (DRG), sciatic nerve and gastrointestinal tissue but not in nasal turbinates or olfactory bulb in rats homozygous for the knock-in allele (HOM-KI). HOM-KI rats exhibited normal intraepidermal nerve fiber density with reduced tetrodotoxin-sensitive current density and action potential firing in small diameter DRG neurons. HOM-KI rats did not exhibit nociceptive pain responses in hot plate or capsaicin-induced flinching assays and did not exhibit neuropathic pain responses following spinal nerve ligation. Consistent with expression of chimeric NaV1.7 in olfactory tissue, HOM-KI rats retained olfactory function. This new genetic model highlights the necessity of NaV1.7 for pain behavior in rats and indicates that sufficient inhibition of NaV1.7 in humans may reduce pain in neuropathic conditions. Due to preserved olfactory function, this rat model represents an alternative to global NaV1.7 knockout mice that require time-intensive hand feeding during early postnatal development.

Learn More >

Effects of oxytocin on placebo and nocebo effects in a pain conditioning paradigm: a randomized controlled trial.

Oxytocin has been shown to increase trust, decrease anxiety and affect learning as has been observed in conditioning paradigms. Trust, anxiety and learning are important factors that influence placebo effects. In this study we investigated whether oxytocin can increase placebo analgesia, decrease nocebo hyperalgesia, and influence extinction processes of both. Eighty male volunteers were assigned to a 40 IU of oxytocin nasal spray group, or to a placebo control group. Placebo analgesia and nocebo hyperalgesia were induced by a conditioning procedure in combination with verbal suggestions. The results demonstrate that the conditioning procedure successfully elicited significant placebo analgesia and nocebo hyperalgesia responses (p < .001). Furthermore, extinction was observed (p < .001), although placebo and nocebo responses did not return to baseline and remained significant. Oxytocin did not influence placebo analgesia or nocebo hyperalgesia and had no effect on extinction. This study provides support against the placebo-boosting effects of oxytocin and was the first one to demonstrate that it also did not influence nocebo effects or extinction processes, however, these results pertain to only a male sample. As managing placebo and nocebo effects has widespread clinical implications, further research should investigate other neurobiological or behavioral pathways to boost placebo and decrease nocebo effects. Trial registration: The study protocol was preregistered on the website www.trialregister.nl under the number NTR6506. Perspective: The present study demonstrated that placebo analgesia and nocebo hyperalgesia can be successfully induced by conditioning and verbal suggestions. We could not confirm the hypothesis that oxytocin affects either of these phenomena. Other pharmacological agents and behavioral manipulations for increasing placebo and decreasing nocebo effects should be investigated.

Learn More >

Glia in the skin activate pain responses.

Learn More >

From correlation towards causality: modulating brain rhythms of pain using transcranial alternating current stimulation.

Learn More >

Tmem119-EGFP and Tmem119-CreERT2 transgenic mice for labeling and manipulating microglia.

Microglia are specialized brain-resident macrophages with important functions in health and disease. To improve our understanding of these cells, the research community needs genetic tools to identify and control them in a manner that distinguishes them from closely related cell-types. We have targeted the recently discovered microglia-specific gene to generate knock-in mice expressing EGFP (JAX#031823) or CreERT2 (JAX#031820) for the identification and manipulation of microglia, respectively. Genetic characterization of the locus and qPCR-based analysis demonstrate correct positioning of the transgenes and intact expression of endogenous in the knock-in mouse models. Immunofluorescence analysis further shows that parenchymal microglia, but not other brain macrophages, are completely and faithfully labeled in the EGFP-line at different time points of development. Flow cytometry indicates highly selective expression of EGFP in CD11bCD45lo microglia. Similarly, immunofluorescence and flow cytometry analyses using a Cre-dependent reporter mouse line demonstrate activity of CreERT2 primarily in microglia upon tamoxifen administration with the caveat of activity in leptomeningeal cells. Finally, flow cytometric analyses reveal absence of EGFP expression and minimal activity of CreERT2 in blood monocytes of the and lines, respectively. These new transgenic lines extend the microglia toolbox by providing the currently most specific genetic labeling and control over these cells in the myeloid compartment of mice. Tools that specifically label and manipulate only microglia are currently unavailable, but are critically needed to further our understanding of this cell type. Complementing and significantly extending recently introduced microglia-specific immunostaining methods that have quickly become a new standard in the field, we generated two mouse lines that label and control gene expression in microglia with high specificity and made them publicly available. Using these readily accessible mice, the research community will be able to study microglia biology with improved specificity.

Learn More >

Quantification of Small Fiber Neuropathy in Chemotherapy Treated Patients.

Chemotherapy-induced peripheral neuropathy (CIPN) is a major, dose-limiting side effect of treatment with neurotoxic cancer treatments which can result in long term impairment. Deficits often reflect a large fiber polyneuropathy, however small fiber involvement resulting in neuropathic pain and autonomic dysfunction can occur. Quantification of both CIPN and small fiber neuropathy (SFN) remains a challenge. Accordingly, the prevalence and pathophysiology of small fiber neuropathy amongst cancer survivors remains poorly understood. This review will provide an overview of the clinical features of SFN associated with neurotoxic cancer treatments as well as a summary of current assessment tools for evaluating small fiber function, and their use in patients treated with neurotoxic chemotherapies. The continued development and utilization of novel measures quantifying small fiber involvement will help elucidate the pathophysiology underlying symptoms of CIPN and assist in informing treatment approaches. Accurately identifying subgroups of patients with neuropathic symptoms which may respond to existing pain medication may reduce the impact of CIPN and improve long-term quality of life as well as provide better categorization of patients for future clinical trials of neuroprotective and treatment strategies for CIPN. PERSPECTIVE: This review provides a critical analysis of SFN associated with neurotoxic cancer treatments and the assessment tools for evaluating small fiber dysfunction in cancer patients. Quantification of small fiber involvement in CIPN will assist in identifying subgroups of patients with neuropathic symptoms which may respond to existing pain medications.

Learn More >

TRESK K Channel Activity Regulates Trigeminal Nociception and Headache.

Although TWIK-related spinal cord K (TRESK) channel is expressed in all primary afferent neurons in trigeminal ganglia (TG) and dorsal root ganglia (DRG), whether TRESK activity regulates trigeminal pain processing is still not established. Dominant-negative TRESK mutations are associated with migraine but not with other types of pain in humans, suggesting that genetic TRESK dysfunction preferentially affects the generation of trigeminal pain, especially headache. Using TRESK global knockout mice as a model system, we found that loss of TRESK in all TG neurons selectively increased the intrinsic excitability of small-diameter nociceptors, especially those that do not bind to isolectin B4 (IB4). Similarly, loss of TRESK resulted in hyper-excitation of the small IB4 dural afferent neurons but not those that bind to IB4 (IB4). Compared with wild-type littermates, both male and female TRESK knockout mice exhibited more robust trigeminal nociceptive behaviors, including headache-related behaviors; whereas their body and visceral pain responses were normal. Interestingly, neither the total persistent outward current nor the intrinsic excitability was altered in adult TRESK knockout DRG neurons, which may explain why genetic TRESK dysfunction is not associated with body and/or visceral pain in humans. We reveal for the first time that, among all primary afferent neurons, TG nociceptors are the most vulnerable to the genetic loss of TRESK. Our findings indicate that endogenous TRESK activity regulates trigeminal nociception, likely through controlling the intrinsic excitability of TG nociceptors. Importantly, we provide evidence that genetic loss of TRESK significantly increases the likelihood of developing headache. TRESK K channel is expressed in all primary afferent neurons in trigeminal ganglia (TG) and dorsal root ganglia (DRG), but dominant-negative TRESK mutations are only associated with migraine but not with other types of pain in humans. In TRESK global knockout mice, we found that ubiquitous loss of TRESK selectively increased the intrinsic excitability of small-diameter TG nociceptors without affecting DRG neuronal excitability. Compared with wild-type littermates, TRESK knockout mice exhibited more robust trigeminal pain, especially headache-related behaviors; whereas their body and visceral pain responses were normal. This recapitulates the clinical manifestations of human TRESK mutations. Our results indicate that endogenous TRESK activity regulates trigeminal nociception, and genetic loss of TRESK significantly increases the likelihood of developing headache.

Learn More >

Search