I am a
Home I AM A Search Login

Accepted

Share this

Commentary 3: Temporomandibular Disorders- Casting the Net to Find Answers.

Learn More >

Purification and Characterization of the Pink-Floyd Drillipeptide, a Bioactive Venom Peptide from (Gastropoda: Conoidea: Drilliidae).

The cone snails (family Conidae) are the best known and most intensively studied venomous marine gastropods. However, of the total biodiversity of venomous marine mollusks (superfamily Conoidea, >20,000 species), cone snails comprise a minor fraction. The venoms of the family Drilliidae, a highly diversified family in Conoidea, have not previously been investigated. In this report, we provide the first biochemical characterization of a component in a Drilliidae venom and define a gene superfamily of venom peptides. A bioactive peptide, cdg14a, was purified from the venom of Fedosov and Puillandre, 2020. The peptide is small (23 amino acids), disulfide-rich (4 cysteine residues) and belongs to the J-like drillipeptide gene superfamily. Other members of this superfamily share a conserved signal sequence and the same arrangement of cysteine residues in their predicted mature peptide sequences. The cdg14a peptide was chemically synthesized in its bioactive form. It elicited scratching and hyperactivity, followed by a paw-thumping phenotype in mice. Using the Constellation Pharmacology platform, the cdg14a drillipeptide was shown to cause increased excitability in a majority of non-peptidergic nociceptors, but did not affect other subclasses of dorsal root ganglion (DRG) neurons. This suggests that the cdg14a drillipeptide may be blocking a specific molecular isoform of potassium channels. The potency and selectivity of this biochemically characterized drillipeptide suggest that the venoms of the Drilliidae are a rich source of novel and selective ligands for ion channels and other important signaling molecules in the nervous system.

Learn More >

Microglia-mediated chronic psoriatic itch induced by imiquimod.

Activation of glial cells has been shown to play an important role in chronic itch. However, whether glial cells play an important role in the development of psoriasis-induced chronic itch has not been fully elucidated. This study investigated the role of spinal glial cells in psoriasis-induced chronic itch. To develop a mouse model of psoriasis-induce chronic itch, we used 5% imiquimod cream to receive a daily topical application on the shaved back skin for seven consecutive days. The results showed that the expression of microglial marker ionized calcium binding adaptor molecule-1 was significantly increased after 5% imiquimod treatment in cervical spinal cord dorsal horn (C3-C4), and the intrathecal microglial inhibitor minocycline or PLX5622 diet suppressed both spontaneous itch and microglial activation. Furthermore, we found that the number of scratches and alloknesis score in female mice was significantly greater than in male mice after 5% imiquimod treatment. Our results indicate that microglia mediate chronic psoriatic itch induced by imiquimod.

Learn More >

Exercise training modulates glutamic acid decarboxylase-65/67 expression through TrkB signaling to ameliorate neuropathic pain in rats with spinal cord injury.

Neuropathic pain is one of the most frequently stated complications after spinal cord injury. In post-spinal cord injury, the decrease of gamma aminobutyric acid synthesis within the distal spinal cord is one of the main causes of neuropathic pain. The predominant research question of this study was whether exercise training may promote the expression of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67, which are key enzymes of gamma aminobutyric acid synthesis, within the distal spinal cord through tropomyosin-related kinase B signaling, as its synthesis assists to relieve neuropathic pain after spinal cord injury. Animal experiment was conducted, and all rats were allocated into five groups: Sham group, SCI/PBS group, SCI-TT/PBS group, SCI/tropomyosin-related kinase B-IgG group, and SCI-TT/tropomyosin-related kinase B-IgG group, and then T10 contusion SCI model was performed as well as the tropomyosin-related kinase B-IgG was used to block the tropomyosin-related kinase B activation. Mechanical withdrawal thresholds and thermal withdrawal latencies were used for assessing pain-related behaviors. Western blot analysis was used to detect the expression of brain-derived neurotrophic factor, tropomyosin-related kinase B, CREB, p-REB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord. Immunohistochemistry was used to analyze the distribution of CREB, p-CREB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord dorsal horn. The results showed that exercise training could significantly mitigate the mechanical allodynia and thermal hyperalgesia in post-spinal cord injury and increase the synthesis of brain-derived neurotrophic factor, tropomyosin-related kinase B, CREB, p-CREB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord. After the tropomyosin-related kinase B signaling was blocked, the analgesic effect of exercise training was inhibited, and in the SCI-TT/tropomyosin-related kinase B-IgG group, the synthesis of CREB, p-CREB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord were also significantly reduced compared with the SCI-TT/PBS group. This study shows that exercise training may increase the glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 expression within the spinal cord dorsal horn through the tropomyosin-related kinase B signaling, and this mechanism may play a vital role in relieving the neuropathic pain of rats caused by incomplete SCI.

Learn More >

Effects of Pulsed Electromagnetic Field Therapy on Pain, Stiffness, Physical Function, and Quality of Life in Patients With Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials.

Pulsed electromagnetic field (PEMF) therapy is a potentially useful treatment for osteoarthritis (OA), but its effectiveness is still controversial. This study aimed to examine the effects of PEMF therapy and PEMF parameters on symptoms and quality of life (QOL) in patients with OA.

Learn More >

Impairment of tactile responses and Piezo2 channel mechanotransduction in mice following chronic vincristine treatment.

Loss of the sense of touch or numbness in fingertips and toes is one of the earliest sensory dysfunctions in patients receiving chemotherapy with anti-cancer drugs such as vincristine. However, mechanisms underlying this chemotherapy-induced sensory dysfunction is poorly understood. Whisker hair follicles are tactile organs in non-primate mammals which are functionally equivalent to human fingertips. Here we used mouse whisker hair follicles as a model system to explore how vincristine treatment induces the loss of the sense of touch. We show that chronic treatment of mice with vincristine impaired in vivo whisker tactile behavioral responses. In vitro electrophysiological recordings made from whisker hair follicle afferent nerves showed that mechanically evoked whisker afferent impulses were significantly reduced following vincristine treatment. Furthermore, patch-clamp recordings from Merkel cells of whisker hair follicles revealed a significant reduction of mechanically activated currents via Piezo2 channels in Merkel cells. Collectively, our results suggest that Piezo2 channel dysfunction in Merkel cells contribute to the loss of the sense of touch following the chemotherapy treatment regimen with vincristine.

Learn More >

Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain.

Chemotherapy-induced peripheral neuropathy (CIPN) is an adverse side effect of many anti-cancer chemotherapeutic treatments. CIPN often causes neuropathic pain in extremities, and oxidative stress has been shown to be a major contributing factor to this pain. In this study, we determined the site of oxidative stress associated with pain (specifically, mechanical hypersensitivity) in cisplatin- and paclitaxel-treated mouse models of CIPN and investigated the neurophysiological mechanisms accounting for the pain. C57BL/6N mice that received either cisplatin or paclitaxel (2 mg/kg, once daily on 4 alternate days) developed mechanical hypersensitivity to von Frey filament stimulations of their hindpaws. Cisplatin-induced mechanical hypersensitivity was inhibited by silencing of Transient Receptor Potential channels V1 (TRPV1)- or TRPA1-expressing afferents, whereas paclitaxel-induced mechanical hypersensitivity was attenuated by silencing of Afibers. While systemic delivery of phenyl N-tert-butylnitrone (PBN), a reactive oxygen species (ROS) scavenger, alleviated mechanical hypersensitivity in both cisplatin- and paclitaxel-treated mice, intraplantar PBN was effective only in cisplatin-treated mice, and intrathecal PBN, only in paclitaxel-treated mice. In a ROS-dependent manner, the mechanosensitivity of A/C fiber endings in the hindpaw skin was increased in cisplatin-treated mice, and the excitatory synaptic strength in the spinal dorsal horn was potentiated in paclitaxel-treated mice. Collectively, these results suggest that cisplatin-induced mechanical hypersensitivity is attributed to peripheral oxidative stress sensitizing mechanical nociceptors, whereas paclitaxel-induced mechanical hypersensitivity is due to central (spinal) oxidative stress maintaining central sensitization that abnormally produces pain in response to Afiber inputs.

Learn More >

Pain-Related Nucleus Accumbens Function: Modulation by Reward and Sleep Disruption.

The nucleus accumbens (NAc) has been implicated in sleep, reward, and pain modulation, but the relationship between these functional roles is unclear. This study aimed to determine if NAc function at the onset and offset of a noxious thermal stimulus is enhanced by rewarding music, and if that effect is reversed by experimental sleep disruption. Twenty-one healthy subjects underwent functional MRI (fMRI) scans on two separate days following both uninterrupted sleep and experimental sleep disruption. During fMRI scans, participants experienced noxious stimulation while listening to individualized rewarding or neutral music. Behavioral results revealed that rewarding music significantly reduced pain intensity compared to neutral music and disrupted sleep was associated with decreased pain intensity in the context of listening to music. In whole-brain FWE cluster-corrected analysis, NAc was activated at pain onset, but not during tonic pain or at pain offset. Sleep disruption attenuated NAc activation at pain onset and during tonic pain. Rewarding music altered NAc connectivity with key nodes of the corticostriatal circuits during pain onset. Sleep disruption increased reward-related connectivity between the NAc and the anterior midcingulate cortex (aMCC) at pain onset. This study thus indicates that experimental sleep disruption modulates NAc function during the onset of pain in a manner that may be conditional on the presence of competing reward-related stimuli. These findings point to potential mechanisms for the interaction between sleep, reward, and pain, and suggest that sleep disruption affects both the detection and processing of aversive stimuli that may have important implications for chronic pain.

Learn More >

TLR4 mediates upregulation and sensitization of TRPV1 in primary afferent neurons in TNBS-induced colitis.

Elevated excitability of primary afferent neurons underlies chronic pain in patients with functional or inflammatory bowel diseases. Recent studies have established an essential role for an enhanced transient receptor potential vanilloid subtype 1 (TRPV1) signaling in mediating peripheral hyperalgesia in inflammatory conditions. Since co-localization of Toll-like receptor 4 (TLR4) and TRPV1 has been observed in primary afferents including the trigeminal sensory neurons and the dorsal root ganglion (DRG) neurons, we test the hypothesis that TLR4 might regulate the expression and function of TRPV1 in primary afferent neurons in TNBS-induced colitis using the TLR4-deficient and the wild type (WT) C57 mice. Despite having a higher disease activity index following administration of TNBS, the TLR4 deficient mice showed less inflammatory infiltration in the colon than the WT mice. Increased expression of TLR4 and TRPV1 as well as increased density of capsaicin-induced TRPV1 current was observed in L4-S2 DRG neurons of WT colitis mice till two weeks post TNBS treatment. In comparison, TLR4 deficient colitis mice had lower TRPV1 expression and TRPV1 current density in DRG neurons with lower abdominal withdrawal response scores during noxious colonic distensions. In WT but not in TLR4-deficient DRG neurons, acute administration of the TLR4 agonist lipopolysacharide (LPS) increased the capsaicin-evoked TRPV1 current. In addition, we found that the canonical signaling downstream of TLR4 was activated in TNBS induced colitis in the WT but not in TLR4-deficient mice. These results indicate that TLR4 may play a major role in regulation of TRPV1 signaling and peripheral hyperalgesia in inflammatory conditions.

Learn More >

Increased pain sensitivity but normal pain modulation in adolescents with migraine.

Inhibitory pain modulation has been reported to be deficient in adults across different types of chronic pain, including migraine. To determine if a similar phenomenon occurs in youth, we performed a quantitative sensory testing investigation in adolescents with migraine (N=19). These patients were compared to healthy adolescents with (Fam-His; N=20) or without (Healthy; N=29) a family history of migraine (e.g., first degree relative with migraine). Subjects were first familiarized with the stimuli and visual analog rating scales using graded noxious stimuli (0°C, 43-49°C range). These data were used to explore potential pain sensitivity differences between the groups. Pain inhibition was assessed by conditioned pain modulation (CPM), which used both suprathreshold heat pain (heat CPM) and pressure pain thresholds (pressure CPM) as the test stimuli before and during cold water immersion (8°C). In response to the graded heat stimuli Fam-His participants reported higher pain intensity ratings compared to migraine patients, who in turn, reported higher pain intensity ratings than the healthy controls [F=3.6, (df=2, 459), p=0.027]. For heat- and pressure- CPM, there was no significant group difference in the magnitude of CPM responses. Thus, adolescents with migraine and healthy adolescents have similar inhibitory pain modulation capability despite having marked differences in pain sensitivity. Although Fam-His participants are asymptomatic, they demonstrate alterations in pain processing which may serve as markers for prediction of migraine development.

Learn More >

Search