I am a
Home I AM A Search Login

Accepted

Share this

Agmatine requires GluN2B-containing NMDA receptors to inhibit the development of neuropathic pain.

A decarboxylated form of L-arginine, agmatine, preferentially antagonizes NMDArs containing Glun2B subunits within the spinal cord and lacks motor side effects commonly associated with non-subunit-selective NMDAr antagonism, namely sedation and motor impairment. Spinally delivered agmatine has been previously shown to reduce the development of tactile hypersensitivity arising from spinal nerve ligation. The present study interrogated the dependence of agmatine's alleviation of neuropathic pain (spared nerve injury (SNI) model) on GluN2B-containing NMDArs. SNI-induced hypersensitivity was induced in mice with significant reduction of levels of spinal GluN2B subunit of the NMDAr and their floxed controls. Agmatine reduced development of SNI-induced tactile hypersensitivity in controls but had no effect in subjects with reduced levels of GluN2B subunits. Ifenprodil, a known GluN2B-subunit-selective antagonist, similarly reduced tactile hypersensitivity in controls but not in the GluN2B-deficient mice. In contrast, MK-801, an NMDA receptor channel blocker, reduced hypersensitivity in both control and GluN2B-deficient mice, consistent with a pharmacological pattern expected from a NMDAr antagonist that does not have preference for GluN2B subtypes. Additionally, we observed that spinally delivered agmatine, ifenprodil and MK-801 inhibited nociceptive behaviors following intrathecal delivery of NMDA in control mice. By contrast, in GluN2B-deficient mice, MK-801 reduced NMDA-evoked nociceptive behaviors, but agmatine had a blunted effect and ifenprodil had no effect. These results demonstrate that agmatine requires the GluN2B subunit of the NMDA receptor for inhibitory pharmacological actions in pre-clinical models of NMDA receptor-dependent hypersensitivity.

Learn More >

Specialty Differences in Initial Evaluation of Patients With Non-Acute Musculoskeletal Pain.

To explore medical diagnostic testing of new cases of musculoskeletal (MSK) conditions associated with chronic pain.

Learn More >

Inhibition of the phosphoinositide 3-kinase-AKT-cyclic GMP-c-Jun N-terminal kinase signaling pathway attenuates the development of morphine tolerance in a mouse model of neuropathic pain.

Research presented here sought to determine if opioid induced tolerance is linked to activity changes within the PI3Kγ-AKT-cGMP-JNK intracellular signaling pathway in spinal cord or peripheral nervous systems. Morphine or saline injections were given subcutaneously twice a day for five days (15 mg/kg) to male C57Bl/6 mice. A separate cohort of mice received spinal nerve ligation (SNL) one week prior to the start of morphine tolerance. Afterwards, spinal cord, dorsal root ganglia, and sciatic nerves were isolated for quantifying total and phosphorylated- JNK levels, cGMP, and gene expression analysis of , and . This pathway was downregulated in the spinal cord with increased expression in the sciatic nerve of morphine tolerant and morphine tolerant mice after SNL. We also observed a significant increase in phosphorylated- JNK levels in the sciatic nerve of morphine tolerant mice with SNL. Pharmacological inhibition of PI3K or JNK, using thalidomide, quercetin, or SP600125, attenuated the development of morphine tolerance in mice with SNL as measured by thermal paw withdrawal. Overall, the PI3K/AKT intracellular signaling pathway is a potential target for reducing the development of morphine tolerance in the peripheral nervous system. Continued research into this pathway will contribute to the development of new analgesic drug therapies.

Learn More >

Enhancement of morphine-induced antinociception after electroconvulsive shock in mice.

Electroconvulsive therapy (ECT) has been applied for chronic pain for decades. The amounts of opioids to treat pain are sometimes reduced after a series of ECT. The effect of ECT on morphine-induced analgesia and its mechanism underlying the reduction of morphine requirement has yet to be clarified. Therefore, we administered electroconvulsive shocks (ECS) to mice and investigated the antinociceptive effect of morphine in a hot plate test. We examined the expression level of µ-opioid receptor in the thalami of mice 25 h after administration of ECS compared to the thalami of mice without ECS administration using western blotting. ECS disturbed the development of a decrease in the percentage of maximal possible effect (%MPE), which was observed 24 h after a morphine injection, when ECS was applied 25, 23, 21, and 12 h before the second administration of morphine. We also examined the effect of ECS on the dose-response curve of %MPE to morphine-antinociception. Twenty-five hours after ECS, the dose-response curve was shifted to the left, and the EC of morphine given to ECS-pretreated mice decreased by 30.1% compared to the mice that were not pretreated with ECS. We also found that the expression level of µ-opioid receptors was significantly increased after ECS administration. These results confirm previous clinical reports showing that ECT decreased the required dose of opioids in neuropathic pain patients and suggest the hypothesis that this effect of ECT works through the thalamus.

Learn More >

Development and validation of the Collaborative Health Outcomes Information Registry body map.

Critical for the diagnosis and treatment of chronic pain is the anatomical distribution of pain. Several body maps allow patients to indicate pain areas on paper; however, each has its limitations.

Learn More >

Low Dose Ketamine Infusion for Comorbid Posttraumatic Stress Disorder and Chronic Pain: A Randomized Double-Blind Clinical Trial.

To date, treatment options (i.e. psychotherapy, antidepressant medications) for patients with posttraumatic stress disorder (PTSD), are relatively few, and considering their limited efficacy, novel therapies have gained interest among researchers and treatment providers alike. Among patients with chronic pain (CP) about one third experience comorbid PTSD, which further complicates their already challenging pharmacological regimens. Low dose ketamine infusion has shown promise in PTSD, and in treatment of CP, however they have not been studied in comorbid population and under rigorous control conditions.

Learn More >

Impact of Catastrophizing in Patients with Temporomandibular Disorders-A Systematic Review.

To assess the prevalence of catastrophizing in patients with temporomandibular disorders (TMD) and the possible associations between catastrophizing and treatment outcome.

Learn More >

Nonopioid drug combinations for cancer pain: protocol for a systematic review.

Pain related to cancer, and its treatment, is common, may severely impair quality of life, and imposes a burden on patients, their families and caregivers, and society. Cancer-related pain is often challenging to manage, with limitations of analgesic drugs including incomplete efficacy and dose-related adverse effects.

Learn More >

Experimental Pain Sensitivity in Subjects with Temporomandibular Disorders and Multiple Other Chronic Pain Conditions: The OPPERA Prospective Cohort Study.

To investigate associations between experimental pain sensitivity and five chronic pain conditions among 655 participants in the OPPERA study.

Learn More >

A Phenomenological Exploration of the Personal Implications of Female Adolescents Living With Chronic Pain.

Chronic pain (CP) negatively impacts everyday previously taken-for-granted activities resulting in considerable psychosocial stress for the individual. Qualitative research in pediatric CP is limited despite the considerable influence CP has on the process of establishing one's personal identity during these formative years and invites the opportunity to understand how CP affects these young individuals from their perspective. The objective of the study was to inquire into the experiences of female adolescents living with CP in order to enhance our understanding of how CP affects their personal lives.

Learn More >

Search