I am a
Home I AM A Search Login

Accepted

Share this

Aberrant salience? Brain hyperactivation in response to pain onset and offset in fibromyalgia.

While much brain research on fibromyalgia (FM) focuses on the study of hyper-responsiveness to painful stimuli, some studies suggest that the increased pain-related brain activity often reported in FM studies may be in part explained by stronger responses to salient aspects of the stimulation rather than, or in addition to, its painfulness. We thus hypothesized that FM patients would demonstrate elevated brain responses to both pain onset and offset, two salient sensory events of opposing valences.

Learn More >

Intra-epidermal nerve endings progress within keratinocyte cytoplasmic tunnels in normal human skin.

Intra-epidermal nerve endings, responsible for cutaneous perception of temperature, pain and itch, are conventionally described as passing freely between keratinocytes, from the basal to the granular layers of the epidermis. However, the recent discovery of keratinocyte contribution to cutaneous nociception implies that their anatomical relationships are much more intimate than what has been described so far. By studying human skin biopsies in confocal laser-scanning microscopy, we show that intra-epidermal nerve endings are not only closely apposed to keratinocytes, but can also be enwrapped by keratinocyte cytoplasms over their entire circumference and thus progress within keratinocyte tunnels. As keratinocytes must activate intra-epidermal nerve endings to transduce nociceptive information, these findings may help understanding the interactions between the keratinocytes and nervous system. The discovery of these nerve portions progressing in keratinocyte tunnels is a strong argument to consider that contacts between epidermal keratinocytes and intra-epidermal nerve endings are not incidental and argues for the existence of specific and rapid paracrine communication from keratinocytes to sensory neurons.

Learn More >

Opioid prescribing patterns among medical providers in the United States, 2003-17: retrospective, observational study.

To examine the distribution and patterns of opioid prescribing in the United States.

Learn More >

Adjunctive effect of the serotonin 5-HT receptor agonist lorcaserin on opioid-induced antinociception in mice.

Opioid-sparing adjuncts are treatments that aim to reduce the overall dose of opioids needed to achieve analgesia, hence decreasing the burden of side effects through alternative mechanisms of action. Lorcaserin is a serotonin 5-HT receptor (5-HTR) agonist that has recently been reported to reduce abuse-related effects of the opioid analgesic oxycodone. The goal of our studies was to evaluate the effects of adjunctive lorcaserin on opioid-induced analgesic-like behavior using the tail-flick reflex (TFR) test as a mouse model of acute thermal nociception. We show that whereas subcutaneous (s.c.) administration of lorcaserin alone was inactive on the TFR test, adjunctive lorcaserin (s.c.) significantly increased the potency of oxycodone as an antinociceptive drug. This effect was prevented by the 5-HTR antagonist SB242084. A similar lorcaserin (s.c.)-induced adjunctive phenotype was observed upon administration of the opioid analgesics morphine and fentanyl. Remarkably, we also show that, opposite to the effects observed via s.c. administration, intrathecal (i.t.) administration of lorcaserin alone induced antinociceptive TFR behavior, an effect that was not prevented by the opioid receptor antagonist naloxone. This route of administration (i.t.) also led to a significant augmentation of oxycodone-induced antinociception. Lorcaserin (s.c.) did not alter the brain or blood concentrations of oxycodone, which suggests that its adjunctive effects on opioid-induced antinociception do not depend upon changes in opioid metabolism. Together, these data indicate that lorcaserin-mediated activation of the 5-HTR may represent a new pharmacological approach to augment opioid-induced antinociception.

Learn More >

Microarray Analyses of the Dorsal Root Ganglia Support a Role for Innate Neuro-Immune Pathways in Persistent Pain in Experimental Osteoarthritis.

Following destabilization of the medial meniscus (DMM), mice develop experimental osteoarthritis (OA) and associated pain behaviors that are dependent on the stage of disease. We aimed to describe changes in gene expression in knee-innervating dorsal root ganglia (DRG) after surgery, in order to identify molecular pathways associated with three pre-defined pain phenotypes: "post-surgical pain", "early-stage OA pain", and "persistent OA pain".

Learn More >

Lasmiditan inhibits calcitonin gene-related peptide release in the rodent trigeminovascular system.

Migraine headache pathophysiology involves trigeminovascular system activation, calcitonin gene-related peptide (CGRP) release and dysfunctional nociceptive transmission. Triptans are 5-HT1B/1D/(1F) receptor agonists that prejunctionally inhibit trigeminal CGRP release, but their vasoconstrictor properties limit their use in migraine patients with cardiovascular disease. In contrast, lasmiditan is a novel antimigraine and selective 5-HT1F receptor agonist devoid of vasoconstrictor properties. On this basis, the present study has investigated the modulation of trigeminal CGRP release by lasmiditan.For this purpose, we have comparatively analysed the inhibition of several components of the trigeminovascular system induced by lasmiditan and sumatriptan through: ex vivo KCl-induced CGRP release from isolated dura mater, trigeminal ganglion and trigeminal nucleus caudalis of mice; and in vivo dural vasodilation in the rat closed-cranial window model induced by endogenous (electrical stimulation, capsaicin) and exogenous CGRP.The ex vivo release of CGRP was similarly inhibited by sumatriptan and lasmiditan in all trigeminovascular system components. In vivo, i.v. lasmiditan or higher doses of sumatriptan significantly attenuated the vasodilatory responses to endogenous CGRP release, but not exogenous CGRP effects. These data suggest that lasmiditan prejunctionally inhibits CGRP release in peripheral and central trigeminal nerve terminals. Since lasmiditan is a lipophilic drug that crosses the blood-brain barrier, additional central sites of action remain to be determined.

Learn More >

Human induced pluripotent stem cell-derived GABAergic interneuron transplants attenuate neuropathic pain.

Neuropathic pain causes severe suffering, and most patients are resistant to current therapies. A core element of neuropathic pain is the loss of inhibitory tone in the spinal cord. Previous studies have shown that foetal GABAergic neuron precursors can provide relief from pain. However, the source of these precursor cells and their multipotent status make them unsuitable for therapeutic use. Here, we extend these findings by showing, for the first time, that spinally transplanted, terminally differentiated human induced pluripotent stem cell-derived GABAergic (iGABAergic) neurons provide significant, long-term, and safe relief from neuropathic pain induced by peripheral nerve injury in mice. Furthermore, iGABAergic neuron transplants survive long term in the injured spinal cord and show evidence of synaptic integration. Together, this provides the proof in principle for the first viable GABAergic transplants to treat human neuropathic pain patients.

Learn More >

Altered Hypothalamic Region Covariance in Migraine and Cluster Headache: A Structural MRI Study.

The hypothalamus plays a key role in both migraine and cluster headache (CH). As brain region-to-region structural correlations are believed to reflect structural and functional brain connectivity patterns, we assessed the structural covariance patterns between the volume of the hypothalamic region and vertex-by-vertex measurements of cortical thickness in patients with migraine and in those with CH relative to healthy controls (HC).

Learn More >

Dysfunctional pain perception and modulation among torture survivors: The role of pain personification.

Individuals exposed to trauma, especially those who develop posttraumatic stress disorder (PTSD), are at a higher risk of suffering from chronic pain as well as altered pain perception and modulation. However, the underlying mechanisms of these processes are yet to be established. Recent findings have indicated that trauma survivors tend to personify chronic pain that is developed after the exposure, in a way that resonates with the traumatic experience. The aim of this study was to test whether pain personification plays a significant role in explaining the long-term links between trauma, PTSD and pain.

Learn More >

Sumatriptan Does Not Antagonize CGRP-Induced Symptoms in Healthy Volunteers.

Previous attempts to develop a pragmatic human model for testing new anti-migraine drugs, have failed. Calcitonin gene-related peptide (CGRP) induces a mild headache in healthy volunteers and migraine-like headache in migraine patients. The induced headache must respond to already established migraine treatment for validation. Thus, the objective of the study was to test the effect of sumatriptan against CGRP-induced symptoms in an attempt to validate CGRP-induced headache as a model for drug testing.

Learn More >

Search