I am a
Home I AM A Search Login

Accepted

Share this

The focus of spatial attention during the induction of central sensitization can modulate the subsequent development of secondary hyperalgesia.

Intense or sustained activation of peripheral nociceptors can induce central sensitization. This enhanced responsiveness to nociceptive input of the central nervous system primarily manifests as an increased sensitivity to painful mechanical pinprick stimuli extending beyond the site of injury (secondary mechanical hyperalgesia) and is thought to be a key mechanism in the development of chronic pain, such as persistent post-operative pain. It is increasingly recognized that emotional and cognitive factors can strongly influence the pain experience. Furthermore, through their potential effects on pain modulation circuits including descending pathways to the spinal cord, it has been hypothesized that these emotional and cognitive factors could constitute risk factors for the susceptibility to develop chronic pain. Here, we tested whether, in healthy volunteers, the experimental induction of central sensitization by peripheral nociceptive input can be modulated by selective spatial attention. While participants performed a somatosensory detection task that required focusing attention towards one of the forearms, secondary hyperalgesia was induced at both forearms using bilateral and simultaneous high-frequency electrical stimulation (HFS) of the skin. HFS induced an increased sensitivity to mechanical pinprick stimuli at both forearms, directly (T1) and 20 min (T2) after HFS, confirming the successful induction of secondary hyperalgesia at both forearms. Most importantly, at T2, the HFS-induced increase in pinprick sensitivity as well as the area of secondary hyperalgesia was greater at the attended arm as compared to the non-attended arm. This indicates that top-down attentional factors can modulate the development of central sensitization by peripheral nociceptive input, and that the focus of spatial attention, besides its modulatory effects on perception, can affect activity-dependent neuroplasticity.

Learn More >

Identification of avoidance genes through neural pathway-specific forward optogenetics.

Understanding how the nervous system bridges sensation and behavior requires the elucidation of complex neural and molecular networks. Forward genetic approaches, such as screens conducted in C. elegans, have successfully identified genes required to process natural sensory stimuli. However, functional redundancy within the underlying neural circuits, which are often organized with multiple parallel neural pathways, limits our ability to identify 'neural pathway-specific genes', i.e. genes that are essential for the function of some, but not all of these redundant neural pathways. To overcome this limitation, we developed a 'forward optogenetics' screening strategy in which natural stimuli are initially replaced by the selective optogenetic activation of a specific neural pathway. We used this strategy to address the function of the polymodal FLP nociceptors mediating avoidance of noxious thermal and mechanical stimuli. According to our expectations, we identified both mutations in 'general' avoidance genes that broadly impact avoidance responses to a variety of natural noxious stimuli (unc-4, unc-83, and eat-4) and mutations that produce a narrower impact, more restricted to the FLP pathway (syd-2, unc-14 and unc-68). Through a detailed follow-up analysis, we further showed that the Ryanodine receptor UNC-68 acts cell-autonomously in FLP to adjust heat-evoked calcium signals and aversive behaviors. As a whole, our work (i) reveals the importance of properly regulated ER calcium release for FLP function, (ii) provides new entry points for new nociception research and (iii) demonstrates the utility of our forward optogenetic strategy, which can easily be transposed to analyze other neural pathways.

Learn More >

Magnetic resonance spectroscopy across chronic pain disorders: a systematic review protocol synthesising anatomical and metabolite findings in chronic pain patients.

Chronic pain is pain greater than 3 months duration that may result from disease, trauma, surgery, or unknown origin. The overlap between the psychological, behavioural, and management aspects of pain suggest that limbic brain neurochemistry plays a role in chronic pain pathology. Proton magnetic resonance spectroscopy (H-MRS) can evaluate in vivo brain metabolites including creatine, N-acetylaspartate, myo-inositol, choline, glutamate, glutamine, and gamma-aminobutyric acid in chronic pain; however, a comprehensive systemic review of metabolite expression patterns across all brain areas has yet to be performed.

Learn More >

Spinal cord motor neuron plasticity accompanies second-degree burn injury and chronic pain.

Burn injuries and associated complications present a major public health challenge. Many burn patients develop clinically intractable complications, including pain and other sensory disorders. Recent evidence has shown that dendritic spine neuropathology in spinal cord sensory and motor neurons accompanies central nervous system (CNS) or peripheral nervous system (PNS) trauma and disease. However, no research has investigated similar dendritic spine neuropathologies following a cutaneous thermal burn injury. In this retrospective investigation, we analyzed dendritic spine morphology and localization in alpha-motor neurons innervating a burn-injured area of the body (hind paw). To identify a molecular regulator of these dendritic spine changes, we further profiled motor neuron dendritic spines in adult mice treated with romidepsin, a clinically approved Pak1-inhibitor, or vehicle control at two postburn time points: Day 6 immediately after treatment, or Day 10 following drug withdrawal. In control treated mice, we observed an overall increase in dendritic spine density, including structurally mature spines with mushroom-shaped morphology. Pak1-inhibitor treatment reduced injury-induced changes to similar levels observed in animals without burn injury. The effectiveness of the Pak1-inhibitor was durable, since normalized dendritic spine profiles remained as long as 4 days despite drug withdrawal. This study is the first report of evidence demonstrating that a second-degree burn injury significantly affects motor neuron structure within the spinal cord. Furthermore, our results support the opportunity to study dendritic spine dysgenesis as a novel avenue to clarify the complexities of neurological disease following traumatic injury.

Learn More >

Alcohol and Pain: A Translational Review of Preclinical and Clinical Findings to Inform Future Treatment Strategies.

Alcohol use disorder (AUD) and chronic pain are enduring and devastating conditions that share an intersecting epidemiology and neurobiology. Chronic alcohol use itself can produce a characteristic painful neuropathy, while the regular analgesic use of alcohol in the context of nociceptive sensitization and heightened affective pain sensitivity may promote negative reinforcement mechanisms that underlie AUD maintenance and progression. The goal of this review is to provide a broad translational framework that communicates research findings spanning preclinical and clinical studies, including a review of genetic, molecular, behavioral, and social mechanisms that facilitate interactions between persistent pain and alcohol use. We also consider recent evidence that will shape future investigations into novel treatment mechanisms for pain in individuals suffering from AUD.

Learn More >

The Daily Grind of Living With Chronic Pain: An Applied Hermeneutic Exploration.

The purpose of this research is to explore the philosophy regarding understanding the complex experience of living with chronic pain. As well, this article addresses a person's suffering as an evolving process of learning to not only manage pain but to learn how to live well through exploring their suffering narrative. A hermeneutical interpretive approach was used to engage participants in this research and to offer a philosophical reinterpretation of living with chronic pain from a humanistic and tacit perspective. This work is offered to invite and extend our discussions about the complexity of living with chronic pain. It can also be understood as a process of rewriting oneself from a lived chaotic state of pain into a new affective historical consciousness. This transition from acute to chronic pain explored through a philosophical context can provide insight into the ways in which patients learn to live well with their condition.

Learn More >

Brain Derived Neurotrophic Factor as a Non-invasive Biomarker for Detection of Endometriosis.

Endometriosis is an estrogen-dependent chronic progressive gynecological disease that affects around 10% of women of reproductive age. A recent study shows that brain-derived neurotrophic factor (BDNF) has the potential as a clinical marker in the diagnosis of endometriosis. We aimed to determine whether BDNF levels are correlated with pain scores associated with endometriosis.

Learn More >

Differences in plasma lipoprotein profiles between patients with chronic peripheral neuropathic pain and healthy controls: an exploratory pilot study.

Little is still known about the underlying mechanisms that drive and maintain neuropathic pain (NeuP). Recently, lipids have been implicated as endogenous proalgesic ligands affecting onset and maintenance of pain; however, in the case of NeuP, the relationship is largely unexplored.

Learn More >

Opioids alter paw placement during walking, confounding assessment of analgesic efficacy in a postsurgical pain model in mice.

Hind paw-directed assays are commonly used to study the analgesic effects of opioids in mice. However, opioid-induced hyperlocomotion can obscure results of such assays.

Learn More >

Sex hormone-related polymorphisms in endometriosis and migraine: A narrative review.

Some evidence indicates endometriosis and migraine have a common genetic predisposition in sex-hormone genes, which could have important implications for the treatment of these two heterogenous conditions. To date, the genes responsibility remains unknown. Based on the biological hypothesis that polymorphisms of genes involved in sex-hormone pathways may influence estrogen levels and phenotypes of both disorders, we did a literature search for candidate sex-hormone genes and genes involved in the metabolism of estradiol. The aim was to review the evidence for shared sex-hormone-related polymorphisms between endometriosis and migraine and provide an exhaustive overview of the current literature. We included case-control studies investigating associations between candidate sex-hormone-related genes and the disorders endometriosis and migraine, respectively. Results showed three overlapping sex-hormone-associated polymorphisms in estrogen receptor genes that are associated with both conditions. To confirm possible associations with other sex-hormone genes, larger studies are needed.

Learn More >

Search