I am a
Home I AM A Search Login

Accepted

Share this

A rat model to investigate quality of recovery after abdominal surgery.

Major advances in therapies to optimize recovery after surgery have been limited by the lack of an animal model that can mimic major domains of postoperative sickness behavior in humans. We hypothesized that the integration of commonly impaired domains of quality of recovery in humans could be reproduced in a rat model.

Learn More >

Veteran engagement in opioid tapering research: a mission to optimize pain management.

Learn More >

Review of complex regional pain syndrome and the role of the neuroimmune axis.

Complex regional pain syndrome (CRPS) is a progressive and painful disease of the extremities that is characterized by continuous pain inconsistent with the initial trauma. CRPS is caused by a multi-mechanism process that involves both the peripheral and central nervous system, with a prominent role of inflammation in CRPS pathophysiology. This review examines what is currently known about the CRPS inflammatory and pain mechanisms, as well as the possible impact of neurostimulation therapies on the neuroimmune axis of CRPS.

Learn More >

Meta-analysis of neural systems underlying placebo analgesia from individual participant fMRI data.

The brain systems underlying placebo analgesia are insufficiently understood. Here we performed a systematic, participant-level meta-analysis of experimental functional neuroimaging studies of evoked pain under stimulus-intensity-matched placebo and control conditions, encompassing 603 healthy participants from 20 (out of 28 eligible) studies. We find that placebo vs. control treatments induce small, widespread reductions in pain-related activity, particularly in regions belonging to ventral attention (including mid-insula) and somatomotor networks (including posterior insula). Behavioral placebo analgesia correlates with reduced pain-related activity in these networks and the thalamus, habenula, mid-cingulate, and supplementary motor area. Placebo-associated activity increases occur mainly in frontoparietal regions, with high between-study heterogeneity. We conclude that placebo treatments affect pain-related activity in multiple brain areas, which may reflect changes in nociception and/or other affective and decision-making processes surrounding pain. Between-study heterogeneity suggests that placebo analgesia is a multi-faceted phenomenon involving multiple cerebral mechanisms that differ across studies.

Learn More >

Innocuous pressure sensation requires A-type afferents but not functional ΡΙΕΖΟ2 channels in humans.

The sensation of pressure allows us to feel sustained compression and body strain. While our understanding of cutaneous touch has grown significantly in recent years, how deep tissue sensations are detected remains less clear. Here, we use quantitative sensory evaluations of patients with rare sensory disorders, as well as nerve blocks in typical individuals, to probe the neural and genetic mechanisms for detecting non-painful pressure. We show that the ability to perceive innocuous pressures is lost when myelinated fiber function is experimentally blocked in healthy volunteers and that two patients lacking Aβ fibers are strikingly unable to feel innocuous pressures at all. We find that seven individuals with inherited mutations in the mechanoreceptor PIEZO2 gene, who have major deficits in touch and proprioception, are nearly as good at sensing pressure as healthy control subjects. Together, these data support a role for Aβ afferents in pressure sensation and suggest the existence of an unknown molecular pathway for its detection.

Learn More >

Loss of POMC-mediated antinociception contributes to painful diabetic neuropathy.

Painful neuropathy is a frequent complication in diabetes. Proopiomelanocortin (POMC) is an endogenous opioid precursor peptide, which plays a protective role against pain. Here, we report dysfunctional POMC-mediated antinociception in sensory neurons in diabetes. In streptozotocin-induced diabetic mice the Pomc promoter is repressed due to increased binding of NF-kB p50 subunit, leading to a loss in basal POMC level in peripheral nerves. Decreased POMC levels are also observed in peripheral nervous system tissue from diabetic patients. The antinociceptive pathway mediated by POMC is further impaired due to lysosomal degradation of μ-opioid receptor (MOR). Importantly, the neuropathic phenotype of the diabetic mice is rescued upon viral overexpression of POMC and MOR in the sensory ganglia. This study identifies an antinociceptive mechanism in the sensory ganglia that paves a way for a potential therapy for diabetic neuropathic pain.

Learn More >

A role for the microbiota in complex regional pain syndrome?

Complex regional pain syndrome (CRPS) is a debilitating neuroinflammatory condition of unknown etiology. Symptoms include excruciating pain and trophic changes in the limbs as defined by the Budapest criteria. The severity and functional recovery of CRPS, unlike most pain conditions, is quantifiable using a variation of the Budapest criteria known as the CRPS severity score. Like many chronic pain conditions, CRPS is difficult to treat once pain has been present for more than 12 months. However, previous work has demonstrated that a subset of patients with new-onset CRPS (~50%) improve if treated within one year, while the rest have minimal to no symptom improvement. Unfortunately, this leads to permanent disability and often requires invasive and costly treatments such as spinal cord stimulation or long-term opioid therapy. Because the etiology is unknown, treatment is multimodal, and often supportive. Biomarkers that predict severity or resolution of symptoms would significantly change treatment but have not yet been identified. Interestingly, there are case reports of remission or resolution of CRPS symptoms with the use of antibiotics known to affect the gut flora. Mouse studies have demonstrated that modulation of the gut microbiome is anti-nociceptive in visceral, inflammatory and neuropathic pain models. We hypothesize that the variable clinical potential for recovery and response to therapy in CRPS may be secondary to or reflected in changes in the gut microbiota. We suggest that the microbiota may mediate or reflect clinical status via the metabolome, activation of the immune system and/or microglial activation. We hypothesize that the gut microbiome is a potential mediator in development and persistence of CRPS symptoms and propose that the clinical condition of CRPS could provide a unique opportunity to identify biomarkers of the microbiota and potential therapies to prevent pain chronification.

Learn More >

Cell-Type Specificity of Neuronal Excitability and Morphology in the Central Amygdala.

Central amygdala (CeA) neurons expressing protein kinase Cδ (PKCδ) or somatostatin (Som) differentially modulate diverse behaviors. The underlying features supporting cell-type-specific function in the CeA, however, remain unknown. Using whole-cell patch-clamp electrophysiology in acute mouse brain slices and biocytin-based neuronal reconstructions, we demonstrate that neuronal morphology and relative excitability are two distinguishing features between Som and PKCδ neurons in the laterocapsular subdivision of the CeA (CeLC). Som neurons, for example, are more excitable, compact, and with more complex dendritic arborizations than PKCδ neurons. Cell size, intrinsic membrane properties, and anatomic localization were further shown to correlate with cell-type-specific differences in excitability. Lastly, in the context of neuropathic pain, we show a shift in the excitability equilibrium between PKCδ and Som neurons, suggesting that imbalances in the relative output of these cells underlie maladaptive changes in behaviors. Together, our results identify fundamentally important distinguishing features of PKCδ and Som cells that support cell-type-specific function in the CeA.

Learn More >

Chronic inflammatory pain alters alcohol-regulated frontocortical signaling and associations between alcohol drinking and thermal sensitivity.

Alcohol use disorder (AUD) is a chronic, relapsing psychiatric disorder that is characterized by the emergence of negative affective states. The transition from recreational, limited intake to uncontrolled, escalated intake is proposed to involve a transition from positive to negative reinforcement mechanisms for seeking alcohol. Past work has identified the emergence of significant hyperalgesia/allodynia in alcohol-dependent animals, which may serve as a key negative reinforcement mechanism. Chronic pain has been associated with enhanced extracellular signal-regulated kinase (ERK) activity in cortical and subcortical nociceptive areas. Additionally, both pain and AUD have been associated with increased activity of the glucocorticoid receptor (GR), a key mediator of stress responsiveness. The objectives of the current study were to first determine relationships between thermal nociceptive sensitivity and alcohol drinking in male Wistar rats. While inflammatory pain induced by complete Freund's adjuvant (CFA) administration did not modify escalation of home cage drinking in animals over four weeks, the relationship between drinking levels and hyperalgesia symptoms reversed between acute (1 week) and chronic (3-4 week) periods post-CFA administration, suggesting that either the motivational or analgesic effects of alcohol may be altered over the time course of chronic pain. We next examined ERK and GR phosphorylation in pain-related brain areas (including the central amygdala and prefrontal cortex subregions) in animals experiencing acute withdrawal from binge alcohol administration (2 g/kg, 6 h withdrawal) and CFA administration (four weeks) to model the neurobiological consequences of binge alcohol exposure in the context of pain. We observed a significant interaction between alcohol and pain state, whereby alcohol withdrawal increased ERK phosphorylation across all four frontocortical areas examined, although this effect was absent in animals experiencing chronic inflammatory pain. Alcohol withdrawal also increased GR phosphorylation across all four frontocortical areas, but these changes were not altered by CFA. Interestingly, we observed significant inter-brain regional correlations in GR phosphorylation between the insula and other regions investigated only in animals exposed to both alcohol and CFA, suggesting coordinated activity in insula circuitry and glucocorticoid signaling in this context. The results of these studies provide a greater understanding of the neurobiology of AUD and will contribute to the development of effective treatment strategies for comorbid AUD and pain.

Learn More >

Adverse childhood experiences and chronic pain among children and adolescents in the United States.

To evaluate the association between adverse childhood experiences (ACEs) and chronic pain during childhood and adolescence.

Learn More >

Search