I am a
Home I AM A Search Login

Accepted

Share this

Quantitative and Microstructural Changes of the Blood-Nerve Barrier in Peripheral Neuropathy.

Peripheral neuropathy is accompanied by changes in the neuronal environment. The blood-nerve barrier (BNB) is crucial in protecting the neural homeostasis: Tight junctions (TJ) seal paracellular spaces and thus prevent external stimuli from entering. In different models of neuropathic pain, the BNB is impaired, thus contributing to local damage, immune cell invasion and, ultimately, the development of neuropathy with its symptoms. In this study, we examined changes in expression and microstructural localization of two key tight junction proteins (TJP), claudin-1 and the cytoplasmic anchoring ZO-1, in the sciatic nerve of mice subjected to chronic constriction injury (CCI). Via qPCR and analysis of fluorescence immunohistochemistry, a marked downregulation of mRNA as well as decreased fluorescence intensity were observed in the nerve for both proteins. Moreover, a distinct zig-zag structure for both proteins located at cell-cell contacts, indicative of the localization of TJs, was observed in the perineurial compartment of sham-operated animals. This microstructural location in cell-cell-contacts was lost in neuropathy as semiquantified via computational analysis, based on a novel algorithm. In summary, we provide evidence that peripheral neuropathy is not only associated with decrease in relevant TJPs but also exhibits alterations in TJP arrangement and loss in barrier tightness, presumably due to internalization. Specifically, semiquantification of TJP in cell-cell-contacts of microcompartments could be used in the future for routine clinical samples of patients with neuropathy.

Learn More >

DOLORisk: study protocol for a multi-centre observational study to understand the risk factors and determinants of neuropathic pain.

Neuropathic pain is an increasingly prevalent condition and has a major impact on health and quality of life. However, the risk factors for the development and maintenance of neuropathic pain are poorly understood. Clinical, genetic and psychosocial factors all contribute to chronic pain, but their interactions have not been studied in large cohorts. The DOLORisk study aims to study these factors. Multicentre cross-sectional and longitudinal cohorts covering the main causes leading to neuropathic pain (e.g. diabetes, surgery, chemotherapy, traumatic injury), as well as rare conditions, follow a common protocol for phenotyping of the participants. This core protocol correlates answers given by the participants on a set of questionnaires with the results of their genetic analyses. A smaller number of participants undergo deeper phenotyping procedures, including neurological examination, nerve conduction studies, threshold tracking, quantitative sensory testing, conditioned pain modulation and electroencephalography. All studies have been approved by their regional ethics committees as required by national law. Results are disseminated through the DOLORisk website, scientific meetings, open-access publications, and in partnership with patient organisations. Large cohorts covering many possible triggers for neuropathic painMulti-disciplinary approach to study the interaction of clinical, psychosocial and genetic risk factorsHigh comparability of the data across centres thanks to harmonised protocolsOne limitation is that the length of the questionnaires might reduce the response rate and quality of responses of participants.

Learn More >

Mechanisms Underlying Overactive Bladder and Interstitial Cystitis/Painful Bladder Syndrome.

The bladder is innervated by extrinsic afferents that project into the dorsal horn of the spinal cord, providing sensory input to the micturition centers within the central nervous system. Under normal conditions, the continuous activation of these neurons during bladder distension goes mostly unnoticed. However, for patients with chronic urological disorders such as overactive bladder syndrome (OAB) and interstitial cystitis/painful bladder syndrome (IC/PBS), exaggerated bladder sensation and altered bladder function are common debilitating symptoms. Whilst considered to be separate pathological entities, there is now significant clinical and pre-clinical evidence that both OAB and IC/PBS are related to structural, synaptic, or intrinsic changes in the complex signaling pathways that mediate bladder sensation. This review discusses how urothelial dysfunction, bladder permeability, inflammation, and cross-organ sensitisation between visceral organs can regulate this neuroplasticity. Furthermore, we discuss how the emotional affective component of pain processing, involving dysregulation of the HPA axis and maladaptation to stress, anxiety and depression, can exacerbate aberrant bladder sensation and urological dysfunction. This review reveals the complex nature of urological disorders, highlighting numerous interconnected mechanisms in their pathogenesis. To find appropriate therapeutic treatments for these disorders, it is first essential to understand the mechanisms responsible, incorporating research from every level of the sensory pathway, from bladder to brain.

Learn More >

Cannabinoid Ligands Targeting TRP Channels.

Transient receptor potential (TRP) channels are a group of membrane proteins involved in the transduction of a plethora of chemical and physical stimuli. These channels modulate ion entry, mediating a variety of neural signaling processes implicated in the sensation of temperature, pressure, and pH, as well as smell, taste, vision, and pain perception. Many diseases involve TRP channel dysfunction, including neuropathic pain, inflammation, and respiratory disorders. In the pursuit of new treatments for these disorders, it was discovered that cannabinoids can modulate a certain subset of TRP channels. The TRP vanilloid (TRPV), TRP ankyrin (TRPA), and TRP melastatin (TRPM) subfamilies were all found to contain channels that can be modulated by several endogenous, phytogenic, and synthetic cannabinoids. To date, six TRP channels from the three subfamilies mentioned above have been reported to mediate cannabinoid activity: TRPV1, TRPV2, TRPV3, TRPV4, TRPA1, and TRPM8. The increasing data regarding cannabinoid interactions with these receptors has prompted some researchers to consider these TRP channels to be "ionotropic cannabinoid receptors." Although CB1 and CB2 are considered to be the canonical cannabinoid receptors, there is significant overlap between cannabinoids and ligands of TRP receptors. The first endogenous agonist of TRPV1 to be discovered was the endocannabinoid, anandamide (AEA). Similarly, arachidonyl dopamine (NADA) and AEA were the first endogenous TRPM8 antagonists discovered. Additionally, Δ-tetrahydrocannabinol (Δ-THC), the most abundant psychotropic compound in cannabis, acts most potently at TRPV2, moderately modulates TRPV3, TRPV4, TRPA1, and TRPM8, though Δ-THC is not reported to modulate TRPV1. Moreover, TRP receptors may modulate effects of synthetic cannabinoids used in research. One common research tool is WIN55,212-2, a CB1 agonist that also exerts analgesic effects by desensitizing TRPA1 and TRPV1. In this review article, we aim to provide an overview and classification of the cannabinoid ligands that have been reported to modulate TRP channels and their therapeutic potential.

Learn More >

Functional and Structural Changes of the Blood-Nerve-Barrier in Diabetic Neuropathy.

The incidence of diabetes mellitus is approaching global epidemic proportions and should be considered a major health-care problem of modern societies in the twenty-first century. Diabetic neuropathy is a common chronic complication of diabetes and, although an adequate glycemic control can reduce the frequency of diabetic neuropathy in type 1 diabetes, the majority of type 2 diabetic patients will develop this complication. The underlying cellular and molecular mechanisms are still poorly understood, preventing the development of effective treatment strategies. However, accumulating evidence suggests that breakdown of the blood-nerve barrier (BNB) plays a pivotal pathophysiological role in diabetic neuropathy. In the present review, we highlight the structural and functional significance of the BNB in health and disease, focusing on the pathological molecular events leading to BNB dysfunction in diabetic neuropathy. In addition, we discuss potential molecular targets involved in BNB homeostasis that may pave the way toward novel therapeutic strategies for treating diabetic neuropathy.

Learn More >

The Expression of Transcription Factors Mecp2 and CREB Is Modulated in Inflammatory Pelvic Pain.

Early activation of transcription factors is one of the epigenetic mechanisms contributing to the induction and maintenance of chronic pain states. Previous studies identified the changes in a number of nociception-related genes, such as calcitonin gene-related peptide (CGRP), substance P (SP), and brain-derived neurotropic factor (BDNF) in the pelvic organs after transient colonic inflammation. The gene and protein expression of these neuropeptides could be modulated by transcription factors Methyl-CpG-binding protein 2 (Mecp2) and cAMP response element-binding protein (CREB). In this study, we aimed to evaluate time-dependent changes in the expression levels of Mecp2 and CREB in the lumbosacral (LS) spinal cord and sensory ganglia after inflammation-induced pelvic pain in rat. Adult Sprague-Dawley rats were treated with 2,4,6-trinitrobenzenesulfonic acid (TNBS) to induce transient colonic inflammation. LS (L6-S2) spinal cord segments and respective dorsal root ganglias (DRGs) were isolated from control and experimental animals at 1, 2, 6, 24 h and 3 days post-TNBS treatment. Immunohistochemical (IHC) labeling and Western blotting experiments were performed to assess the expression of Mecp2, CREB and their phosphorylated forms. Total Mecp2 expression, but not phosphorylated p-Mecp2 (pS421Mecp2) expression was detected in the cells of the spinal dorsal horn under control conditions. Colonic inflammation triggered a significant decrease in the number of Mecp2-expressing neurons in parallel with elevated numbers of pS421Mecp2-expressing cells at 2 h and 6 h post-TNBS. The majority of Mecp2-positive cells (80 ± 6%) co-expressed CREB. TNBS treatment caused a transient up-regulation of CREB-expressing cells at 1 h post-TNBS only. The number of cells expressing phosphorylated CREB (pS133CREB) did not change at 1 h and 2 h post-TNBS, but was down-regulated by three folds at 6 h post-TNBS. Analysis of DRG sections revealed that the number of Mecp2-positive neurons was up-regulated by TNBS treatment, reaching three-fold increase at 2 h post-TNBS, and eight-fold increase at 6 h post-TNBS ( ≤ 0.05 to control). These data showed early changes in Mecp2 and CREB expression in the dorsal horn of the spinal cord and sensory ganglia after colonic inflammation, suggesting a possible contribution Mecp2 and CREB signaling in the development of visceral hyperalgesia and pelvic pain following peripheral inflammation.

Learn More >

Sex Differences in Nociceptin/Orphanin FQ Peptide Receptor-Mediated Pain and Anxiety Symptoms in a Preclinical Model of Post-traumatic Stress Disorder.

Nociceptin/Orphanin FQ (N/OFQ) is a neuropeptide that modulates pain transmission, learning/memory, stress, anxiety, and fear responses via activation of the N/OFQ peptide (NOP or ORL1) receptor. Post-traumatic stress disorder (PTSD) is an anxiety disorder that may arise after exposure to a traumatic or fearful event, and often is co-morbid with chronic pain. Using an established animal model of PTSD, single-prolonged stress (SPS), we were the first to report that NOP receptor antagonist treatment reversed traumatic stress-induced allodynia, thermal hyperalgesia, and anxiety-like behaviors in male Sprague-Dawley rats. NOP antagonist treatment also reversed SPS-induced serum and CSF N/OFQ increase and circulating corticosterone decrease. The objective of this study was to examine the role of the NOP receptor in male and female rats subjected to traumatic stress using Wistar wild type (WT) and NOP receptor knockout (KO) rats. The severity of co-morbid allodynia was assessed as change in paw withdrawal threshold (PWT) to von Frey and paw withdrawal latency (PWL) to radiant heat stimuli, respectively. PWT and PWL decreased in male and female WT rats within 7 days after SPS, and remained decreased through day 28. Baseline sensitivity did not differ between genotypes. However, while male NOP receptor KO rats were protected from SPS-induced allodynia and thermal hypersensitivity, female NOP receptor KO rats exhibited tactile allodynia and thermal hypersensitivity to the same extent as WT rats. Male NOP receptor KO rats had a lower anxiety index (AI) than WT, but SPS did not increase AI in WT males. In contrast, SPS significantly increased AI in WT and NOP receptor KO female rats. SPS increased circulating N/OFQ levels in male WT, but not in male NOP receptor KO, or WT or KO female rats. These results indicate that the absence of the NOP receptor protects males from traumatic-stress-induced allodynia and hyperalgesia, consistent with our previous findings utilizing a NOP receptor antagonist. However, female NOP receptor KO rats experience allodynia, hyperalgesia and anxiety-like symptoms to the same extent as WT females following SPS. This suggests that endogenous N/OFQ-NOP receptor signaling plays an important, but distinct, role in males and females following exposure to traumatic stress.

Learn More >

Pain Expressions and Inhibitory Control in Patients With Fibromyalgia: Behavioral and Neural Correlates.

Fibromyalgia (FM) is a generalized chronic pain condition associated with a variety of symptoms, including altered cognitive and emotional processing. It has been proposed that FM patients show a preferential allocation of attention to information related to the symptoms of the disease, particularly to pain cues. However, the existing literature does not provide conclusive evidence on the presence of this attentional bias, and its effect on cognitive functions such as inhibitory control. To clarify this issue, we recorded the electroencephalographic activity of 31 women diagnosed with FM and 28 healthy women, while performing an emotional Go/NoGo task with micro-videos of pain, happy, and neutral facial expressions. We analyzed behavioral data, performed EEG time-frequency analyses, and obtained the event-related potentials (ERPs) N2 and P3 components in NoGo trials. A series of self-reports was also administered to evaluate catastrophic thinking and the main symptoms of fibromyalgia. Pain expressions were associated with longer reaction times and more errors, as well as with higher theta and delta power, and P3 amplitude to NoGo stimuli. Thus, behavioral and psychophysiological data suggest that increased attention to pain expressions impairs the performance of an inhibitory task, although this effect was similar in FM patients and healthy controls. N2 amplitude was modulated by type of facial expression (larger to pain faces), but only for the control group. This finding suggests that the presentation of pain faces might represent a smaller conflict for the patients, more used to encounter pain stimuli. No main group effects were found significant for N2 or P3 amplitudes, nor for time-frequency data. Using stimuli with greater ecological validity than in previous studies, we could not confirm a greater effect of attentional bias toward negative stimuli over inhibitory performance in patients with FM. Studying these effects allow us to better understand the mechanisms that maintain pain and develop intervention strategies to modify them.

Learn More >

Microglia Express Mu Opioid Receptor: Insights From Transcriptomics and Fluorescent Reporter Mice.

Microglia activation contributes to chronic pain and to the adverse effects of opiate use such as analgesic tolerance and opioid-induced hyperalgesia. Both mu opioid receptor (MOR) encoded by gene and toll like receptor 4 (TLR4) have been reported to mediate these morphine effects and a current question is whether microglia express the Oprm1 transcript and MOR protein. The aim of this study was to characterize -MOR expression in naive murine and human microglia, combining transcriptomics datasets previously published by other groups with our own imaging study using the Cx3cr1-eGFP-MOR-mCherry reporter mouse line. We analyzed microglial expression obtained from transcriptomics datasets, focusing on studies from adult wild-type animals and adult post-mortem human cerebral cortex. , as well as co-regulated gene sets were examined. The expression of MOR in microglia was also investigated using our novel fluorescent Cx3cr1-eGFP-MOR-mcherry reporter mouse line. We determined whether CX3cR1-eGFP positive microglial cells expressed MOR-mCherry protein by imaging various brain areas including the Frontal Cortex, Nucleus Accumbens, Ventral Tegmental Area, Central Amygdala, and Periaqueductal Gray matter, as well as spinal cord. expression was found in all 12 microglia datasets from mouse whole brain, in 7 out of 8 from cerebral cortex, 3 out of 4 from hippocampus, 1 out of 1 from striatum, and 4 out of 5 from mouse or rat spinal cord. was expressed in 16 out of 17 microglia transcriptomes from human cerebral cortex. In Cx3cr1-eGFP-MOR-mCherry mice, the percentage of MOR-positive microglial cells ranged between 35.4 and 51.6% in the different brain areas, and between 36.8 and 42.4% in the spinal cord. The comparative analysis of the microglia transcriptomes indicates that transcripts are expressed in microglia. The investigation of Cx3cr1-eGFP-MOR-mCherry mice also shows microglial expression of MOR proteinin the brain and spine. These results corroborate functional studies showing the actions of MOR agonists on microglia and suppression of these effects by MOR-selective antagonists or MOR knockdown.

Learn More >

Emerging Trends in Pain Modulation by Metabotropic Glutamate Receptors.

Pain is an essential protective mechanism meant to prevent tissue damages in organisms. On the other hand, chronic or persistent pain caused, for example, by inflammation or nerve injury is long lasting and responsible for long-term disability in patients. Therefore, chronic pain and its management represents a major public health problem. Hence, it is critical to better understand chronic pain molecular mechanisms to develop innovative and efficient drugs. Over the past decades, accumulating evidence has demonstrated a pivotal role of glutamate in pain sensation and transmission, supporting glutamate receptors as promising potential targets for pain relieving drug development. Glutamate is the most abundant excitatory neurotransmitter in the brain. Once released into the synapse, glutamate acts through ionotropic glutamate receptors (iGluRs), which are ligand-gated ion channels triggering fast excitatory neurotransmission, and metabotropic glutamate receptors (mGluRs), which are G protein-coupled receptors modulating synaptic transmission. Eight mGluRs subtypes have been identified and are divided into three classes based on their sequence similarities and their pharmacological and biochemical properties. Of note, all mGluR subtypes (except mGlu6 receptor) are expressed within the nociceptive pathways where they modulate pain transmission. This review will address the role of mGluRs in acute and persistent pain processing and emerging pharmacotherapies for pain management.

Learn More >

Search