I am a
Home I AM A Search Login

Accepted

Share this

Could epigenetics help explain racial disparities in chronic pain?

African Americans disproportionately suffer more severe and debilitating morbidity from chronic pain than do non-Hispanic Whites. These differences may arise from differential exposure to psychosocial and environmental factors such as adverse childhood experiences, racial discrimination, low socioeconomic status, and depression, all of which have been associated with chronic stress and chronic pain. Race, as a social construct, makes it such that African Americans are more likely to experience different early life conditions, which may induce epigenetic changes that sustain racial differences in chronic pain. Epigenetics is one mechanism by which environmental factors such as childhood stress, racial discrimination, economic hardship, and depression can affect gene expression without altering the underlying genetic sequence. This article provides a narrative review of the literature on epigenetics as a mechanism by which differential environmental exposure could explain racial differences in chronic pain. Most studies of epigenetic changes in chronic pain examine DNA methylation. DNA methylation is altered in the glucocorticoid (stress response) receptor gene, , which has been associated with depression, childhood stress, low socioeconomic status, and chronic pain. Similarly, DNA methylation patterns of immune cytokine genes have been associated with chronic stress states. Thus, DNA methylation changes may play an essential role in the epigenetic modulation of chronic pain in different races with a higher incidence of epigenetic alterations contributing to more severe and disabling chronic pain in African Americans.

Learn More >

The Benzimidazole Derivatives, B1 (-[(1-Benzimidazol-2-yl)Methyl]-4-Methoxyaniline) and B8 (-{4-[(1-Benzimidazol-2-yl)Methoxy]Phenyl}Acetamide) Attenuate Morphine-Induced Paradoxical Pain in Mice.

Despite being routinely used for pain management, opioid use is limited due to adverse effects such as development of tolerance and paradoxical pain, including thermal hyperalgesia and mechanical allodynia. Evidence indicates that continued morphine administration causes increased expression of proinflammatory mediators such as tumor necrosis factor-alpha (TNF-α). The objectives of the present study were to determine the effects of B1 (-[(1-benzimidazol-2-yl)methyl]-4-methoxyaniline) and B8 (-{4-[(1-benzimidazol-2-yl)methoxy]phenyl}acetamide), benzimidazole derivatives, on thermal nociception and mechanical allodynia during repeated morphine (intraperitoneal; 5 mg/kg twice daily for 6 days)-induced paradoxical pain and TNF-α expression in the spinal cord in mice. Our data indicate that administration of benzimidazole derivatives attenuated morphine-induced thermal hyperalgesia and mechanical allodynia. Benzimidazole derivatives also reduced TNF-α expression in mice. Taken together, these results suggest that benzimidazole derivatives might be useful for the treatment of neuroinflammatory consequences of continued morphine administration and could be potential drug candidates for the management of opioid-induced paradoxical pain.

Learn More >

N/OFQ-NOP System in Peripheral and Central Immunomodulation.

Classical opioids (μ: mu, MOP; δ: delta, DOP and κ: kappa, KOP) variably affect immune function; they are immune depressants and there is good clinical evidence in the periphery. In addition, there is evidence for a central role in the control of a number of neuropathologies, e.g., neuropathic pain. Nociceptin/Orphanin FQ (N/OFQ) is the endogenous ligand for the N/OFQ peptide receptor, NOP; peripheral and central activation can modulate immune function. In the periphery, NOP activation generally depresses immune function, but unlike classical opioids this is in part driven by NOP located on circulating immune cells. Peripheral activation has important implications in pathologies like asthma and sepsis. NOP is expressed on central neurones and glia where activation can modulate glial function. Microglia, as resident central 'macrophages', increase/infiltrate in pain and following trauma; these changes can be reduced by N/OFQ. Moreover, the interaction with other glial cell types such as the ubiquitous astrocytes and their known cross talk with microglia open a wealth of possibilities for central immunomodulation. At the whole animal level, clinical ligands with wide central and peripheral distribution have the potential to modulate immune function, and defining the precise nature of that interaction is important in mitigating or even harnessing the adverse effect profile of these important drugs.

Learn More >

The History of N/OFQ and the NOP Receptor.

The discovery of nociceptin/orphanin FQ (N/OFQ) marks the genuine start of the reverse pharmacology era, when systematic hunting for ligands of orphan receptors began. The choice of this particular target was no coincidence as the orphan receptor ORL-1 displayed high similarity to known opioid receptors, and thus its elusive ligand held promise to find more than a ligand but a missing opioid peptide. N/OFQ indeed turned out to belong to the opioid peptide family, but with significant pharmacological and functional distinctions. The quest for understanding N/OFQ's physiological functions has produced some novel insights into stress regulation and many other body functions but is still ongoing almost 25 years after its discovery. This chapter highlights the early steps of orphan receptor research and some of the protagonists who helped to advance the field.

Learn More >

Open-label placebo response – Does optimism matter? A secondary-analysis of a randomized controlled trial.

Open-label placebos (OLPs) have been found to elicit significant and clinical meaningful effects, but in comparison to deceptive placebo administration there is a lack of research regarding possible predictors. This study sets out to examine the effects of optimism and other personality-related variables on OLP responses.

Learn More >

Gain-of-function mutations in the UNC-2/CaV2α channel lead to hyperactivity and excitation-dominant synaptic transmission in Caenorhabditis elegans.

Learn More >

Sigma-1 Receptor Inhibition Reduces Neuropathic Pain Induced by Partial Sciatic Nerve Transection in Mice by Opioid-Dependent and -Independent Mechanisms.

Sigma-1 (σ) receptor antagonists are promising tools for neuropathic pain treatment, but it is unknown whether σ receptor inhibition ameliorates the neuropathic signs induced by nerve transection, in which the pathophysiological mechanisms and response to drug treatment differ from other neuropathic pain models. In addition, σ antagonism ameliorates inflammatory pain through modulation of the endogenous opioid system, but it is unknown whether this occurs during neuropathic pain. We investigated the effect of σ inhibition on the painful hypersensitivity associated with the spared nerve injury (SNI) model in mice. Wild-type (WT) mice developed prominent cold (acetone test), mechanical (von Frey test), and heat hypersensitivity (Hargreaves test) after SNI. σ receptor knockout (ခσ-KO) mice did not develop cold allodynia and showed significantly less mechanical allodynia, although they developed heat hyperalgesia after SNI. The systemic acute administration of the selective σ receptor antagonist S1RA attenuated all three types of SNI-induced hypersensitivity in WT mice. These ameliorative effects of S1RA were reversed by the administration of the σ agonist PRE-084, and were absent in σ-KO mice, indicating the selectivity of S1RA-induced effects. The opioid antagonist naloxone and its peripherally restricted analog naloxone methiodide prevented S1RA-induced effects in mechanical and heat hypersensitivity, but not in cold allodynia, indicating that opioid-dependent and -independent mechanisms are involved in the effects of this σ antagonist. The repeated administration of S1RA twice a day during 10 days reduced SNI-induced cold, mechanical, and heat hypersensitivity without inducing analgesic tolerance during treatment. These effects were observed up to 12 h after the last administration, when S1RA was undetectable in plasma or brain, indicating long-lasting pharmacodynamic effects. These data suggest that σ antagonism may have therapeutic value for the treatment of neuropathic pain induced by the transection of peripheral nerves.

Learn More >

Chronic Widespread Pain and Fibromyalgia Syndrome: Life-Course Risk Markers in Young People.

Although the life-course concept of risk markers as potential etiological influences is well established in epidemiology, it has not featured in academic publications or clinical practice in the context of chronic widespread pain (CWP) and fibromyalgia syndrome (FMS). Studies of risk markers are required considerations for evaluation of patients and for research because there is no single cause, pathological feature, laboratory finding, or biomarker for CWP or FMS. The early-life risk markers identified by extensive literature review with best evidence for potential causal influence on the development and progression of CWP and FMS include genetic factors, premature birth, female sex, early childhood adversity, cognitive and psychosocial influences, impaired sleep, primary pain disorders, multiregional pain, physical trauma, infectious illness, obesity and inactivity, hypermobility of joints, iron deficiency, and small-fiber polyneuropathy. The case history illustrates the potential etiological influence of multiple risk markers offset by personal resilience.

Learn More >

Necrostatin-1 Ameliorates Peripheral Nerve Injury-Induced Neuropathic Pain by Inhibiting the RIP1/RIP3 Pathway.

Necrostatin-1 is an inhibitor of necroptosis, a form of programmed cell death that has been reported to be involved in various neurological diseases. Presently, the role of necroptosis in neuropathic pain induced by peripheral nerve injury is still unclear. This study was focused on investigating the potential effects of necroptosis in the development and progression of neuropathic pain in a rat model and the possible neuroprotective effects of necrostatin-1 in neuropathic pain. The results indicated that the necroptosis-related proteins RIP1 and RIP3 significantly increased postoperation in the spinal cord in a neuropathic pain model and peaked 7 days postoperation, which was consistent with the time-dependent changes of hyperalgesia. Additionally, we found that peripheral nerve injury-related behavioral and biochemical changes were significantly reduced by necrostatin-1. In particular, hyperalgesia was attenuated, and the levels of RIP1 and RIP3 were decreased. Furthermore, the ultrastructure of necrotic cell death and neuroinflammation were alleviated by necrostatin-1. Collectively, these results suggest that necroptosis is an important mechanism of cell death in neuropathic pain induced by peripheral nerve injury and that necrostatin-1 may be a promising neuroprotective treatment for neuropathic pain.

Learn More >

Efficacy of virtual reality to reduce chronic low back pain: Proof-of-concept of a non-pharmacological approach on pain, quality of life, neuropsychological and functional outcome.

Chronic pain, such as low-back pain, can be a highly disabling condition degrading people's quality of life (QoL). Not every patient responds to pharmacological therapies, thus alternative treatments have to be developed. The chronicity of pain can lead to a somatic dysperception, meaning a mismatch between patients' own body perception and its actual physical state. Since clinical evaluation of pain relies on patients' subjective reports, a body image disruption can be associated with an incorrect pain rating inducing incorrect treatment and a possible risk of drug abuse. Our aim was to reduce chronic low-back pain through a multimodal neurorehabilitative strategy using innovative technologies to help patients regain a correct body image.

Learn More >

Search