I am a
Home I AM A Search Login

Accepted

Share this

Experimentally induced pain does not influence updating of peripersonal space and body representations following tool-use.

Representations of the body and peripersonal space can be distorted for people with some chronic pain conditions. Experimental pain induction can give rise to similar, but transient distortions in healthy individuals. However, spatial and bodily representations are dynamic, and constantly update as we interact with objects in our environment. It is unclear whether induced pain disrupts the mechanisms involved in updating these representations. In the present study, we sought to investigate the effect of induced pain on the updating of peripersonal space and body representations during and following tool-use. We compared performance under three conditions (pain, active placebo, neutral) on a visuotactile crossmodal congruency task and a tactile distance judgement task to measure updating of peripersonal space and body representations, respectively. Consistent with previous findings, the difference in crossmodal interference from visual distractors in the same compared to opposite visual field to the tactile target was less when tools were crossed than uncrossed. This suggests an extension of peripersonal space to incorporate the tips of the tools. Also consistent with previous findings, estimates of the felt tactile distance judgements decreased after active tool-use. In contrast to our predictions, however, we found no evidence that pain interfered with performance on either task when compared to the control conditions. Our findings suggest that the updating of peripersonal space and body representations is not disrupted by induced pain. That is, experiencing acute pain does not give rise to distorted representations of the body and peripersonal space that can be present in people with chronic pain conditions.

Learn More >

Duloxetine, a Balanced Serotonin-Norepinephrine Reuptake Inhibitor, Improves Painful Chemotherapy-Induced Peripheral Neuropathy by Inhibiting Activation of p38 MAPK and NF-κB.

Chemotherapy-induced peripheral neuropathy (CIPN) is a severe, toxic side effect that frequently occurs in anticancer treatment and may result in discontinuation of treatment as well as a serious reduction in life quality. The CIPN incidence rate is as high as 85-90%. Unfortunately, there is currently no standard evidence-based CIPN treatment. In several clinical trials, it has been reported that duloxetine can improve CIPN pain induced by oxaliplatin (OXA) and paclitaxel (PTX); thus, The American Society of Clinical Oncology (ASCO) recommends duloxetine as the only potential treatment for CIPN. However, this guidance lacks the support of sufficient evidence. Our study shows that duloxetine markedly reduces neuropathic pain evoked by OXA or PTX. Duloxetine acts by inhibiting the activation of p38 phosphorylation, thus preventing the activation and nuclear translocation of the NF-κB transcription factor, reducing the inflammatory response and inhibiting nerve injury by regulating nerve growth factor (NGF). Furthermore, in this study, it is shown that duloxetine does not affect the antitumor activity of OXA or PTX. This study not only provides biological evidence to support the use of duloxetine as the first standard CIPN drug but will also lead to potential new targets for CIPN drug development.

Learn More >

A Neuroscience Perspective of Physical Treatment of Headache and Neck Pain.

The most prevalent primary headaches tension-type headache and migraine are frequently associated with neck pain. A wide variety of treatment options is available for people with headache and neck pain. Some of these interventions are recommended in guidelines on headache: self-management strategies, pharmacological and non-pharmacological interventions. Physical treatment is a frequently applied treatment for headache. Although this treatment for headache is predominantly targeted on the cervical spine, the neurophysiological background of this intervention remains unclear. Recent knowledge from neuroscience will enhance clinical reasoning in physical treatment of headache. Therefore, we summarize the neuro- anatomical and-physiological findings on headache and neck pain from experimental research in both animals and humans. Several neurophysiological models (referred pain, central sensitization) are proposed to understand the co-occurrence of headache and neck pain. This information can be of added value in understanding the use of physical treatment as a treatment option for patients with headache and neck pain.

Learn More >

Dietary polyphenols as a safe and novel intervention for modulating pain associated with intervertebral disc degeneration in an in-vivo rat model.

Developing effective therapies for back pain associated with intervertebral disc (IVD) degeneration is a research priority since it is a major socioeconomic burden and current conservative and surgical treatments have limited success. Polyphenols are naturally occurring compounds in plant-derived foods and beverages, and evidence suggests dietary supplementation with select polyphenol preparations can modulate diverse neurological and painful disorders. This study tested whether supplementation with a select standardized Bioactive-Dietary-Polyphenol-Preparation (BDPP) may alleviate pain symptoms associated with IVD degeneration. Painful IVD degeneration was surgically induced in skeletally-mature rats by intradiscal saline injection into three consecutive lumbar IVDs. Injured rats were given normal or BDPP-supplemented drinking water. In-vivo hindpaw mechanical allodynia and IVD height were assessed weekly for 6 weeks following injury. Spinal column, dorsal-root-ganglion (DRG) and serum were collected at 1 and 6 weeks post-operative (post-op) for analyses of IVD-related mechanical and biological pathogenic processes. Dietary BDPP significantly alleviated the typical behavioral sensitivity associated with surgical procedures and IVD degeneration, but did not modulate IVD degeneration nor changes of pro-inflammatory cytokine levels in IVD. Gene expression analyses suggested BDPP might have an immunomodulatory effect in attenuating the expression of pro-inflammatory cytokines in DRGs. This study supports the idea that dietary supplementation with BDPP has potential to alleviate IVD degeneration-related pain, and further investigations are warranted to identify the mechanisms of action of dietary BDPP.

Learn More >

Brain-Dependent Processes Fuel Pain-Induced Hemorrhage After Spinal Cord Injury.

Pain (nociceptive) input caudal to a spinal contusion injury can undermine long-term recovery and increase tissue loss (secondary injury). Prior work suggests that nociceptive stimulation has this effect because it fosters the breakdown of the blood-spinal cord barrier (BSCB) at the site of injury, allowing blood to infiltrate the tissue. The present study examined whether these effects impact tissue rostral and caudal to the site of injury. In addition, the study evaluated whether cutting communication with the brain, by means of a rostral transection, affects the development of hemorrhage. Eighteen hours after rats received a lower thoracic (T11-12) contusion injury, half underwent a spinal transection at T2. Noxious electrical stimulation (shock) was applied 6 h later. Cellular assays showed that, in non-transected rats, nociceptive stimulation increased hemoglobin content, activated pro-inflammatory cytokines and engaged signals related to cell death at the site of injury. These effects were not observed in transected animals. In the next experiment, the spinal transection was performed at the time of contusion injury. Nociceptive stimulation was applied 24 h later and tissue was sectioned for microscopy. In non-transected rats, nociceptive stimulation increased the area of hemorrhage and this effect was blocked by spinal transection. These findings imply that the adverse effect of noxious stimulation depends upon spared ascending fibers and the activation of rostral (brain) systems. If true, stimulation should induce less hemorrhage after a severe contusion injury that blocks transmission to the brain. To test this, rats were given a mild, moderate, or severe, injury and electrical stimulation was applied 24 h later. Histological analyses of longitudinal sections showed that nociceptive stimulation triggered less hemorrhage after a severe contusion injury. The results suggest that brain-dependent processes drive pain-induced hemorrhage after spinal cord injury (SCI).

Learn More >

Opioid prescription patterns in Germany and the global opioid epidemic: Systematic review of available evidence.

Opioids are one of the most important and effective drug classes in pain medicine with a key role in most medical fields. The increase of opioid prescription over time has led to higher numbers of prescription opioid misuse, abuse and opioid-related deaths in most developed OECD (Organisation for Economic Co-operation and Development) countries around the world. Whilst reliable data on the prevalence of opioid treatment is accessible for many countries, data on Germany specifically is still scarce. Considering Germany being the largest country in the European Union, the lack of evidence-based strategies from long-term studies is crucial. The aim of this work is to review and summarise relevant published literature on the prevalence of opioid prescription in Germany to adequately inform health policy strategies.

Learn More >

Treatment patterns in patients using triptan and prophylactic medication: an analysis of clinical practice prior to the introduction of CGRP antagonists.

The newly developed calcitonin gene-related peptide (CGRP) antagonists were recently launched on the US and European market, with Switzerland as the second country worldwide. To enable forthcoming comparisons with established migraine therapy, the aim of this study was to provide a comprehensive picture of migraine (prophylactic) treatment patterns. Recent data in daily clinical practice are lacking.

Learn More >

Internal health locus of control as a predictor of pain reduction in multidisciplinary inpatient treatment for chronic pain: a retrospective study.

Chronic pain is a major health concern and its treatment requires physiological as well as psychological interventions. This study investigates the predictive value of health locus of control (HLOC) in pain intensity in chronic pain patients in an inpatient treatment setting.

Learn More >

Placebo and Nocebo Effects Across Symptoms: From Pain to Fatigue, Dyspnea, Nausea, and Itch.

Placebo and nocebo effects are, respectively, the helpful and harmful treatment effects that do not arise from active treatment components. These effects have thus far been researched most often in pain. It is not yet clear to what extent these findings from pain can be generalized to other somatic symptoms. This review investigates placebo and nocebo effects in four other highly prevalent symptoms: dyspnea, fatigue, nausea, and itch. The role of learning mechanisms (verbal suggestions, conditioning) in placebo and nocebo effects on various outcomes (self-reported, behavioral, and physiological) of these different somatic symptoms is explored. A search of experimental studies indicated that, as in pain, the combination of verbal suggestion and conditioning is generally more effective than suggestion alone for evoking placebo and nocebo effects. However, conditioning appears more and verbal suggestions less relevant in symptoms other than pain, with the exception of placebo effects on fatigue and nocebo effects on itch. Physiological measures, such as heart rate, lung function, or gastric activity, are rarely affected even when self-reported symptoms are. Neurobiological correlates are rarely investigated, and few commonalities appear across symptoms. Expectations generally predict placebo and nocebo effects for dyspnea and itch but seem less involved in fatigue and nausea. Individual characteristics do not consistently predict placebo or nocebo effects across symptoms or studies. In sum, many conclusions deriving from placebo and nocebo pain studies do appear to apply to other somatic symptoms, but a number of important differences exist. Understanding what type of learning mechanisms for which symptom are most likely to trigger placebo and nocebo effects is crucial for generalizing knowledge for research and therapies across symptoms and can help clinicians to optimize placebo effects in practice.

Learn More >

Intradermal Injection of Oxytocin Aggravates Chloroquine-Induced Itch Responses Activating the Vasopressin-1a Receptor/Nitric Oxide Pathway in Mice.

Oxytocin (OT), a hormone synthesized within the paraventricular nucleus and supraoptic nucleus of the hypothalamus, when given intracerebroventricularly, induces strong scratching behaviors. However, it is not clear whether intradermal injection (ID) of OT elicits itch sensation. Herein, we found that OT (0.02 mg/ml) did not elicit an itch-scratching response in mice but aggravated chloroquine (CQ, 3 mmol/L)-elicited scratching behavior. Similar to OT, arginine vasopressin (AVP, 0.02 mg/ml), which is structurally related to OT, also enhanced CQ-induced scratching behavior but did not directly induce scratching behavior in mice. Mechanistically, OT-mediated enhancement of CQ-induced scratching behavior was significantly suppressed by conivaptan (0.05 mg/ml), a vasopressin-1a receptor (V1AR) antagonist and 1,400 W (3 mg/kg), inhibitor of inducible nitric oxide synthase (iNOS), but not OT receptor (OTR) antagonist L-368,899 (0.05 mg/ml). Notably, conivaptan also directly decreased CQ-induced scratching. In conclusion, OT plays a role in CQ-induced scratching behavior V1AR binding events. V1AR antagonists could be used as possible treatments for CQ-induced itch.

Learn More >

Search