I am a
Home I AM A Search Login

Accepted

Share this

Inhibition of Cytochrome P450 Side-Chain Cleavage Attenuates the Development of Mechanical Allodynia by Reducing Spinal D-Serine Production in a Murine Model of Neuropathic Pain.

Research indicates that neurosteroids are locally synthesized in the central nervous system and play an important modulatory role in nociception. While the neurosteroidogenic enzyme, cytochrome P450 side-chain cleavage enzyme (P450scc), is the initiating enzyme of steroidogenesis, P450scc has not been examined under the pathophysiological conditions associated with peripheral neuropathy. Thus, we investigated whether chronic constriction injury (CCI) of the sciatic nerve increases the expression of P450scc in the spinal cord and whether this increase modulates serine racemase (Srr) expression and D-serine production contributing to the development of neuropathic pain. CCI increased the immunoreactivity of P450scc in astrocytes of the ipsilateral lumbar spinal cord dorsal horn. Intrathecal administration of the P450scc inhibitor, aminoglutethimide, during the induction phase of neuropathic pain (days 0 to 3 post-surgery) significantly suppressed the CCI-induced development of mechanical allodynia and thermal hyperalgesia, the increased expression of astrocyte Srr in both the total and cytosol levels, and the increases in D-serine immunoreactivity at day 3 post-surgery. By contrast, intrathecal administration of aminoglutethimide during the maintenance phase of pain (days 14 to 17 post-surgery) had no effect on the developed neuropathic pain nor the expression of spinal Srr and D-serine immunoreactivity at day 17 post-surgery. Intrathecal administration of exogenous D-serine during the induction phase of neuropathic pain (days 0 to 3 post-surgery) restored the development of mechanical allodynia, but not the thermal hyperalgesia, that were suppressed by aminoglutethimide administration. Collectively, these results demonstrate that spinal P450scc increases the expression of astrocyte Srr and D-serine production, ultimately contributing to the development of mechanical allodynia induced by peripheral nerve injury.

Learn More >

Cebranopadol: A Novel First-in-Class Potent Analgesic Acting via NOP and Opioid Receptors.

Cebranopadol is a novel first-in-class analgesic with highly potent agonistic activity at nociceptin/orphanin FQ peptide (NOP) and opioid receptors. It is highly potent and efficacious across a broad range of preclinical pain models. Its side effect profile is better compared to typical opioids. Mechanistic studies have shown that cebranopadol's activity at NOP receptors contributes to its anti-hyperalgesic effects while ameliorating some of its opioid-type side effects, including respiratory depression and abuse potential. Phase II of clinical development has been completed, demonstrating efficacy and good tolerability in acute and chronic pain conditions.This article focusses on reviewing data on the preclinical in vitro and in vivo pharmacology, safety, and tolerability, as well as clinical trials with cebranopadol.

Learn More >

Modulating pain thresholds through classical conditioning.

Classical conditioning has frequently been shown to be capable of evoking fear of pain and avoidance behavior in the context of chronic pain. However, whether pain itself can be conditioned has rarely been investigated and remains a matter of debate. Therefore, the present study investigated whether pain threshold ratings can be modified by the presence of conditioned non-nociceptive sensory stimuli in healthy participant.

Learn More >

Quantitative Sensory Testing (QST) in Drug-Naïve Patients with Parkinson’s Disease.

Pain is highly prevalent in patients with Parkinson's disease (PD), but underlying pathophysiological mechanisms are largely unclear. Alterations in somatosensory processing might contribute to sensory abnormalities in PD.

Learn More >

Characterization of novel lnc RNAs in the spinal cord of rats with lumbar disc herniation.

Radicular pain, caused by a lesion or autologous nucleus pulposus (NP) implantation, is associated with alteration in gene expression of the pain-signaling pathways. lncRNAs have been shown to play critical roles in neuropathic pain. However, the mechanistic function of lncRNAs in lumbar disc herniation (LDH) remains largely unknown. Identifying different lncRNA expression under sham and NP-implantation conditions in the spinal cord is important for understanding the molecular mechanisms of radicular pain.

Learn More >

Contribution of GABAergic modulation in DRGs to electroacupuncture analgesia in incisional neck pain rats.

Acupuncture therapy is effective for relieving postoperative pain. Our previous study showed that electroacupuncture (EA) at Futu (LI18) and Hegu (LI4)-Neiguan (PC6) could alleviate incisional neck pain, which was related with its effect in upregulating γ-aminobutyric acid (GABA) expression in cervical (C3-6) dorsal root ganglions (DRGs); but whether its receptor subsets GABAα2R and GABAR1 in C3-6 DRGs are involved in EA analgesia or not, it remains unknown.

Learn More >

Patterns of gray matter alterations in migraine and restless legs syndrome.

Migraine and restless legs syndrome (RLS) are often comorbid and share elements of pathology; however, their neuroanatomical underpinnings are poorly understood. This study aimed to identify patterns of gray matter volume (GMV) alteration specific to and common among patients with RLS, migraine, and comorbid migraine and RLS.

Learn More >

Multiple effectiveness aspects of tapentadol for moderate-severe cancer-pain treatment: an observational prospective study.

Previous studies have shown the efficacy of tapentadol (TP) for chronic cancer pain. We evaluated multiple effectiveness aspects of TP prolonged release on moderate-severe cancer-related pain, neuropathic pain (NeP), patient satisfaction, and quality of life.

Learn More >

Transcranial magnetic stimulation.

This review presents the neurophysiologic principles and clinical applications of transcranial magnetic stimulation (TMS) and other related techniques of noninvasive cortical stimulation. TMS can serve various purposes for diagnosis or treatment. Regarding diagnosis, TMS is mainly dedicated to the recording of motor evoked potentials (MEPs). MEP recording allows investigation of corticospinal conduction time and cortical motor control in clinical practice. Especially when using image-guided neuronavigation methods, MEP recording is a reliable method to perform functional mapping of muscle representation within the motor cortex. Using various types of paired-pulse paradigms, TMS allows the assessment of brain circuit excitability or plastic changes affecting these circuits. In particular, paired-pulse TMS paradigms are able to appraise the intracortical balance between inhibitory controls mediated by GABAergic neurotransmission and excitatory controls mediated by glutamatergic neurotransmission. Finally, TMS delivered as repetitive trains of stimulation (rTMS) may activate, inhibit, or otherwise interfere with the activity of neuronal cortical networks, depending on stimulus frequency and intensity, and brain-induced electric field configuration. Therefore by modifying brain functions, with after-effects lasting beyond the time of stimulation, rTMS opens exciting perspectives for therapeutic applications, especially in the domain of depression and chronic pain syndromes.

Learn More >

Pharmaceutical Effects of Inhibiting the Soluble Epoxide Hydrolase in Canine Osteoarthritis.

Osteoarthritis (OA) is a degenerative joint disease that causes pain and bone deterioration driven by an increase in prostaglandins (PGs) and inflammatory cytokines. Current treatments focus on inhibiting prostaglandin production, a pro-inflammatory lipid metabolite, with NSAID drugs; however, other lipid signaling targets could provide safer and more effective treatment strategies. Epoxides of polyunsaturated fatty acids (PUFAs) are anti-inflammatory lipid mediators that are rapidly metabolized by the soluble epoxide hydrolase (sEH) into corresponding vicinal diols. Interestingly, diol levels are increased in the synovial fluid of humans with OA, warranting further research on the biological role of this lipid pathway in the progression of OA. sEH inhibitors (sEHI) stabilize these biologically active, anti-inflammatory lipid epoxides, resulting in analgesia in both neuropathic, and inflammatory pain conditions. Most experimental studies testing the analgesic effects of sEH inhibitors have used experimental rodent models, which do not completely represent the complex etiology of painful diseases. Here, we tested the efficacy of sEHI in aged dogs with natural arthritis to provide a better representation of the clinical manifestations of pain. Two sEHI were administered orally, once daily for 5 days to dogs with naturally occurring arthritis to assess efficacy and pharmacokinetics. Blinded technicians recorded the behavior of the arthritic dogs based on pre-determined criteria to assess pain and function. After 5 days, EC1728 significantly reduced pain at a dose of 5 mg/kg compared to vehicle controls. Pharmacokinetic evaluation showed concentrations exceeding the enzyme potency in both plasma and synovial fluid. data showed that epoxyeicosatrienoic acid (EETs), epoxide metabolites of arachidonic acid, decreased inflammatory cytokines, IL-6 and TNF-α, and reduced cytotoxicity in canine chondrocytes challenged with IL1β to simulate an arthritic environment. These results provide the first example of altering lipid epoxides as a therapeutic target for OA potentially acting by protecting chondrocytes from inflammatory induced cytotoxicity. Considering the challenges and high variability of naturally occurring disease in aged dogs, these data provide initial proof of concept justification that inhibiting the sEH is a non-NSAID, non-opioid, disease altering strategy for treating OA, and warrants further investigation.

Learn More >

Search