I am a
Home I AM A Search Login

Accepted

Share this

Transcriptome profiling of dorsal root ganglia in a rat model of complex regional pain syndrome type-I reveals potential mechanisms involved in pain.

Complex regional pain syndrome type-I (CRPS-I) is a progressive and devastating pain condition, which remains clinically challenging. The mechanisms of CRPS-I still remain largely unknown. We aim to identify transcriptome profiles of genes relevant to pain mechanisms and major pathways involved in CRPS-I. A rat model of chronic post-ischemia pain (CPIP) was established to mimic CRPS-I. RNA-sequencing (RNA-Seq) was used to profile transcriptome of L4-6 dorsal root ganglia (DRGs) of a rat model of CRPS-I. CPIP model rats developed persistent mechanical/thermal hyperalgesia in ipsilateral hind paw. RNA-Seq identified a total of 295 differentially expressed genes (DEGs), including 195 up- and 100 downregulated, in ipsilateral DRGs of CPIP rats compared with sham rats. The expression of several representative genes was confirmed by qPCR. Functional analysis of DEGs revealed that the most significant enriched biological processes of upregulated genes include response to lipopolysaccharide, inflammatory response and cytokine activity, which are all important mechanisms mediating pain. We further screened DEGs implicated in pain progress, genes enriched in small- to medium-sized sensory neurons and enriched in TRPV1-lineage nociceptors. By comparing our dataset with other published datasets of neuropathic or inflammatory pain models, we identified a core set of genes and pathways that extensively participate in CPIP and other neuropathic pain states. Our study identified transcriptome gene changes in DRGs of an animal model of CRPS-I and could provide insights into identifying promising genes or pathways that can be potentially targeted to ameliorate CRPS-I.

Learn More >

An ethnography of chronic pain management in primary care: The social organization of physicians’ work in the midst of the opioid crisis.

This study reports on physicians' experiences with chronic pain management. For over a decade prescription opioids have been a primary treatment for chronic pain in North America. However, the current opioid epidemic has complicated long-standing practices for chronic pain management which historically involved prescribing pain medication. Caring for patients with chronic pain occurs within a context in which a growing proportion of patients suffer from chronic rather than acute conditions alongside rising social inequities.

Learn More >

Association between change in self-efficacy and reduction in disability among patients with chronic pain.

This study aimed to investigate whether changes in psychosocial factors and pain severity were associated with reduction in disability due to pain among patients with chronic pain. We hypothesized that increased self-efficacy would reduce disability.

Learn More >

Brain Microglial Activation in Chronic Pain-Associated Affective Disorder.

A growing body of evidence from both clinical and animal studies indicates that chronic neuropathic pain is associated with comorbid affective disorders. Spinal cord microglial activation is involved in nerve injury-induced pain hypersensitivity characterizing neuropathic pain. However, there is a lack of thorough assessments of microglial activation in the brain after nerve injury. In the present study, we characterized microglial activation in brain sub-regions of CX3CR1 mice after chronic constriction injury (CCI) of the sciatic nerve, including observations at delayed time points when affective brain dysfunctions such as depressive-like behaviors typically develop. Mice manifested chronic mechanical hypersensitivity immediately after CCI and developed depressive-like behaviors 8 weeks post-injury. Concurrently, significant increases of soma size and microglial cell number were observed in the medial prefrontal cortex (mPFC), hippocampus, and amygdala 8 weeks post-injury. Transcripts of CD11b, and TNF-α, genes associated with microglial activation or depressive-like behaviors, are correspondingly upregulated in these brain areas. Our results demonstrate that microglia are activated in specific brain sub-regions after CCI at delayed time points and imply that brain microglial activation plays a role in chronic pain-associated affective disorders.

Learn More >

Pharmacological Treatment of Chemotherapy-Induced Neuropathic Pain: PPARγ Agonists as a Promising Tool.

Chemotherapy-induced neuropathic pain (CINP) is one of the most severe side effects of anticancer agents, such as platinum- and taxanes-derived drugs (oxaliplatin, cisplatin, carboplatin and paclitaxel). CINP may even be a factor of interruption of treatment and consequently increasing the risk of death. Besides that, it is important to take into consideration that the incidence of cancer is increasing worldwide, including colorectal, gastric, lung, cervical, ovary and breast cancers, all treated with the aforementioned drugs, justifying the concern of the medical community about the patient's quality of life. Several physiopathological mechanisms have already been described for CINP, such as changes in axonal transport, mitochondrial damage, increased ion channel activity and inflammation in the central nervous system (CNS). Another less frequent event that may occur after chemotherapy, particularly under oxaliplatin treatment, is the central neurotoxicity leading to disorders such as mental confusion, catatonia, hyporeflexia, etc. To date, no pharmacological therapy has shown satisfactory effect in these cases. In this scenario, duloxetine is the only drug currently in clinical use. Peroxisome proliferator-activated receptors (PPARs) belong to the class of nuclear receptors and are present in several tissues, mainly participating in lipid and glucose metabolism and inflammatory response. There are three PPAR isoforms: α, β/δ and γ. PPARγ, the protagonist of this review, is expressed in adipose tissue, large intestine, spleen and neutrophils. This subtype also plays important role in energy balance, lipid biosynthesis and adipogenesis. The effects of PPARγ agonists, known for their positive activity on type II diabetes mellitus, have been explored and present promising effects in the control of neuropathic pain, including CINP, and also cancer. This review focuses largely on the mechanisms involved in chemotherapy-induced neuropathy and the effects of the activation of PPARγ to treat CINP. It is the aim of this review to help understanding and developing novel CINP therapeutic strategies integrating PPARγ signalling.

Learn More >

Novel Molecular Targets for the Treatment of Pain: A Special Issue of Frontiers in Molecular Neuroscience.

Learn More >

Pain interference type and level guide the assessment process in chronic pain: Categorizing pain patients entering tertiary pain treatment with the Brief Pain Inventory.

Chronic pain patients enter treatment with different problem profiles making careful assessment a necessity for more individualized treatment plans. In this cross-sectional study we assigned 320 patients entering tertiary multidisciplinary pain treatment into four categories based on whether they scored low or high on the activity and the affective pain interference dimensions of the Brief Pain Inventory (BPI). To determine whether this categorization system delineates issues that should be assessed further, the categories were compared with ANOVA and MANOVA analyses on three domains: variables affecting physical well-being (body mass index, exercise, substance use), psychological resources (mood), and pain-specific psychological factors (pain anxiety, pain acceptance). The results indicated that subjects who scored low on both interference dimensions compared similarly in weight: mean Body Mass Index (BMI) 27.0 (SD 6.0) kg/m2, and exercise: mean of 2.4 (SD 1.7) exercising sessions over 20 minutes per week, to the general population, had no depressive symptoms on average: mean Beck Depression Index II (BDI-II) score 11.7 (SD 7.5), and had the most favorable psychological reactions to pain relative to the other categories: mean total Pain Anxiety Symptoms Scale-20 (PASS-20) score 36.4 (SD 17.9). In contrast, when interference was high on activity, more physical well-being problems were evident e.g. weight: mean BMI 31.0 (SD 7.3) kg/m2, diminished exercise: mean of 1.5 (SD 1.6) exercising sessions per week, and avoidance behavior: mean PASS-20 Escape/Avoidance subscale 3.7 (95% CI: 1.7 to 5.8) scores higher in comparison to activity interference remaining low. With high affective interference, more depressive symptoms: mean BDI-II score 17.7 (SD 7.3), and more cognitive pain anxiety: mean PASS-20 Cognitive Anxiety subscale 2.8 (95% CI 0.7 to 4.8) scores higher in comparison to affective interference remaining low, emerged. Having high interference on both dimensions indicated accumulated risks for reduced physical well-being: mean BMI 29.9 (SD 6.1) kg/m2, mean of 1.2 (SD 1.7) exercising sessions per week, mood problems: mean BDI-II 20.3 (SD 10.6), and negative psychological reactions to pain: mean total PASS-20 score 53.2 (18.4). The results suggest that low interference on both dimensions may allow assessment with only physician consultations, while high interference on either dimension may call attention to distinct issues to be addressed with the help of a physiotherapist or a psychologist, whereas high interference on both dimensions highlights the need for a full multidisciplinary assessment.

Learn More >

Itch Processing in the Skin.

Itching can result from activity of specialized primary afferent neurons ("pruriceptors") that have been shown to express certain molecular markers such as B-type natriuretic peptide and several members of the Mrgpr-family in rodents. On the other hand, neurons involved in pain processing ("nociceptors") can also provoke itching when the activation site is restricted to an isolated tiny spot within the epidermis. Individuals classified as having sensitive skin report increased itching and pain sensations upon weak external stimuli that are not painful or itchy in the control group. Numerous possible factors could contribute to sensitive skin along the pathway of transduction of the external stimuli into peripheral neuronal signals, followed by neuronal processing, finally resulting in the perception: (a) reduced local protective factors leading to impaired skin barrier function, (b) increased production of excitatory skin mediators, (c) sensitized peripheral neurons, (d) facilitated spinal and central processing, and (e) reduced descending inhibition from the central nervous system. For all of those pathophysiological mechanisms there are clinical examples such as atopic dermatitis (a,b,c), neuropathic itching (c,e), and restless leg syndrome (d,e). However, none of these factors have been directly linked to the occurrence of sensitive skin. Moreover, individuals reporting sensitive skin are heterogeneous and a subpopulation with defined pathophysiology has not yet been identified. Given that the condition is reported in about 50% of women, and thereby includes many healthy individuals, it appears problematic to assign a definitive pathophysiological mechanism to it.

Learn More >

The World Health Organization Disability Assessment Schedule-2.0 (WHODAS 2.0) in a chronic pain population being considered for chronic opioid therapy.

To examine the validity of the World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0) for the assessment of function in a community-based sample of patients with chronic pain conditions undergoing evaluation for chronic opioid therapy.

Learn More >

Pruritus in Autoimmune and Inflammatory Dermatoses.

Pruritus in autoimmune and inflammatory dermatoses is a common symptom that can be severe and affect the quality of life of patients. In some diseases, pruritus is related to disorders activity and severity or may occur independent of the disease. Despite the high prevalence, the symptom is still underrated and there are only a few trials investigating the efficacy of drugs for disease-specific pruritus. In this review, the characteristics and possible pathomechanisms of pruritus in various dermatoses like autoimmune bullous diseases, connective tissue diseases as well as autoimmune-associated dermatoses (atopic dermatitis, psoriasis vulgaris) is illustrated. Additionally, studies analyzing the antipruritic treatment are discussed. Summarizing, the prevalence of pruritus in these diseases demonstrates the importance for symptom recognition and the need for an efficient antipruritic therapy.

Learn More >

Search