I am a
Home I AM A Search Login

Accepted

Share this

Acute postoperative opioid consumption trajectories and long-term outcomes in pediatric patients after spine surgery.

The days following surgery are a critical period where the use of opioids predicts long-term outcomes in adults. It is currently unknown as to whether opioid consumption throughout the acute postoperative period is associated with long-term outcomes in pediatric patients. The aims of this study were to characterize opioid consumption trajectories in the acute postoperative period, identify predictors of trajectory membership and determine associations between opioid consumption trajectories and long-term patient outcomes. Medication use, pain and mental health status were assessed at baseline in adolescents with idiopathic scoliosis who were scheduled for spinal fusion surgery. Cumulative 6-hr opioid consumption was recorded for up to 5 days after spinal surgery. At 6 months after surgery, medication use, pain and functional activity were evaluated. Growth mixture modeling was used to identify opioid trajectories. One hundred and six patients were included in the study. Mean cumulative 6-hr opioid consumption in the acute postoperative period was 13.23±5.20 mg/kg. The model with the best fit contained 5 acute postoperative trajectories and a quadratic term (AIC =6703.26, BIC =6767.19). Two types of patient behaviors were identified: high opioid consumers (trajectories 4 and 5) and low opioid consumers (trajectories 1, 2 and 3). Intraoperative intrathecal morphine dose was a predictor of trajectory membership (p=0.0498). Opioid consumption during the acute postoperative period was not significantly associated with pain, functional activity or pain medication use at 6 months after surgery. In pediatric patients, intraoperative intrathecal morphine dose predicts opioid consumption in the acute postoperative period. Importantly, opioid consumption during this period does not affect long-term outcomes in pediatric patients after a spine surgery.

Learn More >

The effect of differential spatiotopic information on the acquisition and generalization of fear of movement-related pain.

Fear of movement-related pain significantly contributes to musculoskeletal chronic pain disability. Previous research has shown that fear of movement-related pain can be classically conditioned. That is, in a differential fear conditioning paradigm, after (repeatedly) pairing a neutral joystick movement (conditioned stimulus; CS+) with a painful stimulus (unconditioned stimulus; pain-US), that movement in itself starts to elicit self-reported fear and elevated psychophysiological arousal compared to a control joystick movement (CS-) that was never paired with pain. Further, it has been demonstrated that novel movements that are more similar to the original CS+ elicit more fear than novel movements that are more similar to the CS-, an adaptive process referred to as . By default, movement/action takes place in reference to the three-dimensional space: a movement thus not only involves proprioceptive information, but it also contains spatiotopic information. Therefore, the aim of this study was to investigate to what extent spatiotopic information (i.e., endpoint location of movement) contributes to the acquisition and generalization of such fear of movement-related pain besides proprioception (i.e., movement direction). In a between-subjects design, the location group performed joystick movements from the middle position to left and right; the movement group moved the joystick from left and right to the middle. One movement (CS+) was paired with pain, another not (CS-). between CSs typically reduces differential learning. The endpoint of both CSs in the movement group is an overlapping feature whereas in the location group the endpoint of both CSs is distinct; therefore we hypothesized that there would be less differential fear learning in the movement group compared to the location group. We also tested generalization to movements with similar proprioceptive features but different endpoint location. Following the principle of stimulus generalization, we expected that novel movements in the same direction as the CS+ but with a different endpoint would elicit more fear than novel movement in the same direction of the CS- but with a different endpoint. Main outcome variables were self-reported fear and pain-US expectancy and eyeblink startle responses (electromyographic). Corroborating the feature overlap hypothesis, the location group showed greater differential fear acquisition. Fear generalization emerged for both groups in the verbal ratings, suggesting that fear indeed accrued to proprioceptive CS features; these effects, however, were not replicated in the startle measures.

Learn More >

Transcriptome profiling of dorsal root ganglia in a rat model of complex regional pain syndrome type-I reveals potential mechanisms involved in pain.

Complex regional pain syndrome type-I (CRPS-I) is a progressive and devastating pain condition, which remains clinically challenging. The mechanisms of CRPS-I still remain largely unknown. We aim to identify transcriptome profiles of genes relevant to pain mechanisms and major pathways involved in CRPS-I. A rat model of chronic post-ischemia pain (CPIP) was established to mimic CRPS-I. RNA-sequencing (RNA-Seq) was used to profile transcriptome of L4-6 dorsal root ganglia (DRGs) of a rat model of CRPS-I. CPIP model rats developed persistent mechanical/thermal hyperalgesia in ipsilateral hind paw. RNA-Seq identified a total of 295 differentially expressed genes (DEGs), including 195 up- and 100 downregulated, in ipsilateral DRGs of CPIP rats compared with sham rats. The expression of several representative genes was confirmed by qPCR. Functional analysis of DEGs revealed that the most significant enriched biological processes of upregulated genes include response to lipopolysaccharide, inflammatory response and cytokine activity, which are all important mechanisms mediating pain. We further screened DEGs implicated in pain progress, genes enriched in small- to medium-sized sensory neurons and enriched in TRPV1-lineage nociceptors. By comparing our dataset with other published datasets of neuropathic or inflammatory pain models, we identified a core set of genes and pathways that extensively participate in CPIP and other neuropathic pain states. Our study identified transcriptome gene changes in DRGs of an animal model of CRPS-I and could provide insights into identifying promising genes or pathways that can be potentially targeted to ameliorate CRPS-I.

Learn More >

An ethnography of chronic pain management in primary care: The social organization of physicians’ work in the midst of the opioid crisis.

This study reports on physicians' experiences with chronic pain management. For over a decade prescription opioids have been a primary treatment for chronic pain in North America. However, the current opioid epidemic has complicated long-standing practices for chronic pain management which historically involved prescribing pain medication. Caring for patients with chronic pain occurs within a context in which a growing proportion of patients suffer from chronic rather than acute conditions alongside rising social inequities.

Learn More >

Association between change in self-efficacy and reduction in disability among patients with chronic pain.

This study aimed to investigate whether changes in psychosocial factors and pain severity were associated with reduction in disability due to pain among patients with chronic pain. We hypothesized that increased self-efficacy would reduce disability.

Learn More >

Brain Microglial Activation in Chronic Pain-Associated Affective Disorder.

A growing body of evidence from both clinical and animal studies indicates that chronic neuropathic pain is associated with comorbid affective disorders. Spinal cord microglial activation is involved in nerve injury-induced pain hypersensitivity characterizing neuropathic pain. However, there is a lack of thorough assessments of microglial activation in the brain after nerve injury. In the present study, we characterized microglial activation in brain sub-regions of CX3CR1 mice after chronic constriction injury (CCI) of the sciatic nerve, including observations at delayed time points when affective brain dysfunctions such as depressive-like behaviors typically develop. Mice manifested chronic mechanical hypersensitivity immediately after CCI and developed depressive-like behaviors 8 weeks post-injury. Concurrently, significant increases of soma size and microglial cell number were observed in the medial prefrontal cortex (mPFC), hippocampus, and amygdala 8 weeks post-injury. Transcripts of CD11b, and TNF-α, genes associated with microglial activation or depressive-like behaviors, are correspondingly upregulated in these brain areas. Our results demonstrate that microglia are activated in specific brain sub-regions after CCI at delayed time points and imply that brain microglial activation plays a role in chronic pain-associated affective disorders.

Learn More >

Pharmacological Treatment of Chemotherapy-Induced Neuropathic Pain: PPARγ Agonists as a Promising Tool.

Chemotherapy-induced neuropathic pain (CINP) is one of the most severe side effects of anticancer agents, such as platinum- and taxanes-derived drugs (oxaliplatin, cisplatin, carboplatin and paclitaxel). CINP may even be a factor of interruption of treatment and consequently increasing the risk of death. Besides that, it is important to take into consideration that the incidence of cancer is increasing worldwide, including colorectal, gastric, lung, cervical, ovary and breast cancers, all treated with the aforementioned drugs, justifying the concern of the medical community about the patient's quality of life. Several physiopathological mechanisms have already been described for CINP, such as changes in axonal transport, mitochondrial damage, increased ion channel activity and inflammation in the central nervous system (CNS). Another less frequent event that may occur after chemotherapy, particularly under oxaliplatin treatment, is the central neurotoxicity leading to disorders such as mental confusion, catatonia, hyporeflexia, etc. To date, no pharmacological therapy has shown satisfactory effect in these cases. In this scenario, duloxetine is the only drug currently in clinical use. Peroxisome proliferator-activated receptors (PPARs) belong to the class of nuclear receptors and are present in several tissues, mainly participating in lipid and glucose metabolism and inflammatory response. There are three PPAR isoforms: α, β/δ and γ. PPARγ, the protagonist of this review, is expressed in adipose tissue, large intestine, spleen and neutrophils. This subtype also plays important role in energy balance, lipid biosynthesis and adipogenesis. The effects of PPARγ agonists, known for their positive activity on type II diabetes mellitus, have been explored and present promising effects in the control of neuropathic pain, including CINP, and also cancer. This review focuses largely on the mechanisms involved in chemotherapy-induced neuropathy and the effects of the activation of PPARγ to treat CINP. It is the aim of this review to help understanding and developing novel CINP therapeutic strategies integrating PPARγ signalling.

Learn More >

Novel Molecular Targets for the Treatment of Pain: A Special Issue of Frontiers in Molecular Neuroscience.

Learn More >

Pain interference type and level guide the assessment process in chronic pain: Categorizing pain patients entering tertiary pain treatment with the Brief Pain Inventory.

Chronic pain patients enter treatment with different problem profiles making careful assessment a necessity for more individualized treatment plans. In this cross-sectional study we assigned 320 patients entering tertiary multidisciplinary pain treatment into four categories based on whether they scored low or high on the activity and the affective pain interference dimensions of the Brief Pain Inventory (BPI). To determine whether this categorization system delineates issues that should be assessed further, the categories were compared with ANOVA and MANOVA analyses on three domains: variables affecting physical well-being (body mass index, exercise, substance use), psychological resources (mood), and pain-specific psychological factors (pain anxiety, pain acceptance). The results indicated that subjects who scored low on both interference dimensions compared similarly in weight: mean Body Mass Index (BMI) 27.0 (SD 6.0) kg/m2, and exercise: mean of 2.4 (SD 1.7) exercising sessions over 20 minutes per week, to the general population, had no depressive symptoms on average: mean Beck Depression Index II (BDI-II) score 11.7 (SD 7.5), and had the most favorable psychological reactions to pain relative to the other categories: mean total Pain Anxiety Symptoms Scale-20 (PASS-20) score 36.4 (SD 17.9). In contrast, when interference was high on activity, more physical well-being problems were evident e.g. weight: mean BMI 31.0 (SD 7.3) kg/m2, diminished exercise: mean of 1.5 (SD 1.6) exercising sessions per week, and avoidance behavior: mean PASS-20 Escape/Avoidance subscale 3.7 (95% CI: 1.7 to 5.8) scores higher in comparison to activity interference remaining low. With high affective interference, more depressive symptoms: mean BDI-II score 17.7 (SD 7.3), and more cognitive pain anxiety: mean PASS-20 Cognitive Anxiety subscale 2.8 (95% CI 0.7 to 4.8) scores higher in comparison to affective interference remaining low, emerged. Having high interference on both dimensions indicated accumulated risks for reduced physical well-being: mean BMI 29.9 (SD 6.1) kg/m2, mean of 1.2 (SD 1.7) exercising sessions per week, mood problems: mean BDI-II 20.3 (SD 10.6), and negative psychological reactions to pain: mean total PASS-20 score 53.2 (18.4). The results suggest that low interference on both dimensions may allow assessment with only physician consultations, while high interference on either dimension may call attention to distinct issues to be addressed with the help of a physiotherapist or a psychologist, whereas high interference on both dimensions highlights the need for a full multidisciplinary assessment.

Learn More >

Itch Processing in the Skin.

Itching can result from activity of specialized primary afferent neurons ("pruriceptors") that have been shown to express certain molecular markers such as B-type natriuretic peptide and several members of the Mrgpr-family in rodents. On the other hand, neurons involved in pain processing ("nociceptors") can also provoke itching when the activation site is restricted to an isolated tiny spot within the epidermis. Individuals classified as having sensitive skin report increased itching and pain sensations upon weak external stimuli that are not painful or itchy in the control group. Numerous possible factors could contribute to sensitive skin along the pathway of transduction of the external stimuli into peripheral neuronal signals, followed by neuronal processing, finally resulting in the perception: (a) reduced local protective factors leading to impaired skin barrier function, (b) increased production of excitatory skin mediators, (c) sensitized peripheral neurons, (d) facilitated spinal and central processing, and (e) reduced descending inhibition from the central nervous system. For all of those pathophysiological mechanisms there are clinical examples such as atopic dermatitis (a,b,c), neuropathic itching (c,e), and restless leg syndrome (d,e). However, none of these factors have been directly linked to the occurrence of sensitive skin. Moreover, individuals reporting sensitive skin are heterogeneous and a subpopulation with defined pathophysiology has not yet been identified. Given that the condition is reported in about 50% of women, and thereby includes many healthy individuals, it appears problematic to assign a definitive pathophysiological mechanism to it.

Learn More >

Search