I am a
Home I AM A Search Login

Accepted

Share this

Loss of STEP61 couples disinhibition to N-methyl-d-aspartate receptor potentiation in rodent and human spinal pain processing.

Dysregulated excitability within the spinal dorsal horn is a critical mediator of chronic pain. In the rodent nerve injury model of neuropathic pain, BDNF-mediated loss of inhibition (disinhibition) gates the potentiation of excitatory GluN2B N-methyl-d-aspartate receptor (NMDAR) responses at lamina I dorsal horn synapses. However, the centrality of this mechanism across pain states and species, as well as the molecular linker involved, remain unknown. Here, we show that KCC2-dependent disinhibition is coupled to increased GluN2B-mediated synaptic NMDAR responses in a rodent model of inflammatory pain, with an associated downregulation of the tyrosine phosphatase STEP61. The decreased activity of STEP61 is both necessary and sufficient to prime subsequent phosphorylation and potentiation of GluN2B NMDAR by BDNF at lamina I synapses. Blocking disinhibition reversed the downregulation of STEP61 as well as inflammation-mediated behavioural hypersensitivity. For the first time, we characterize GluN2B-mediated NMDAR responses at human lamina I synapses and show that a human ex vivo BDNF model of pathological pain processing downregulates KCC2 and STEP61 and upregulates phosphorylated GluN2B at dorsal horn synapses. Our results demonstrate that STEP61 is the molecular brake that is lost following KCC2-dependent disinhibition and that the decrease in STEP61 activity drives the potentiation of excitatory GluN2B NMDAR responses in rodent and human models of pathological pain. The ex vivo human BDNF model may thus form a translational bridge between rodents and humans for identification and validation of novel molecular pain targets.

Learn More >

Pregnancy, Birth, Neonatal, and Postnatal Neurological Outcomes After Pregnancy With Migraine.

Prevalence of migraine is high during the reproductive age. Although migraine often improves during pregnancy, the risk of adverse pregnancy, birth, neonatal, and neurological outcomes in mother and offspring remains poorly understood.

Learn More >

Pathophysiological Mechanisms in Migraine and the Identification of New Therapeutic Targets.

Migraine is a strongly disabling disease characterized by a unilateral throbbing headache lasting for up to 72 h for each individual attack. There have been many theories on the pathophysiology of migraine throughout the years. Currently, the neurovascular theory dominates, suggesting clear involvement of the trigeminovascular system. The most recent data show that a migraine attack most likely originates in the hypothalamus and activates the trigeminal nucleus caudalis (TNC). Although the mechanisms are unknown, activation of the TNC leads to peripheral release of calcitonin gene-related protein (CGRP), most likely from C-fibers. During the past year monoclonal antibodies against CGRP or the CGRP receptor have emerged as the most promising targets for migraine therapy, and at the same time established the strong involvement of CGRP in the pathophysiology of migraine. The viewpoint presented here focuses further on the activation of the CGRP receptor on the sensory Aδ-fiber, leading to the sensation of pain. The CGRP receptor activates adenylate cyclase, which leads to an increase in cyclic adenosine monophosphate (cAMP). We hypothesize that cAMP activates the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, triggering an action potential sensed as pain. The mechanisms behind migraine pain on a molecular level, particularly their importance to cAMP, provide clues to potential new anti-migraine targets. In this article we focus on the development of targets related to the CGRP system, and further include novel targets such as the pituitary adenylate cyclase-activating peptide (PACAP) system, the serotonin 5-HT receptor, purinergic receptors, HCN channels, adenosine triphosphate-sensitive potassium channels (K), and the glutaminergic system.

Learn More >

Guidelines of the International Headache Society for controlled trials of preventive treatment of migraine in children and adolescents, 1st edition.

Because the results of clinical trials of investigational treatments influence regulatory policy, prescribing patterns, and use in clinical practice, high quality trials are an essential component of the evidence base for migraine. The International Headache Society has published guidelines for clinical trials in adults with migraine since 1991. With multiple issues specific to children and adolescents with migraine, as well as the emergence of novel trial designs and advances in pharmaceuticals, biologics, devices, and behavioural interventions, there is a need for guidance focusing on issues specific to the conduct of clinical trials in children and adolescents with migraine.

Learn More >

The discovery and development of inhaled therapeutics for migraine.

Migraine is a disabling primary headache disorder that requires effective treatments. Inhalation is currently being explored for the delivery of drugs for migraine. Pulmonary-route delivery of drugs shows potential advantages for its use as a treatment, particularly compared the oral route. Areas covered: The authors highlight the current state of the literature and review multiple therapies for migraine-utilizing inhalation as the route of administration. The following therapeutics are discussed: inhaled ergotamine, inhaled dihydroergotamine mesylate (MAP0004), inhaled prochlorperazine, and inhaled loxapine. Coverage is also given to normobaric oxygen, hyperbaric oxygen, and nitrous oxide therapies. Expert opinion: Inhalation of MAP0004 showed promising results in terms of efficacy for acute migraine treatment in phase 3 studies, together with a more favorable tolerability profile compared to parenteral dosing and a better pharmacokinetic profile versus oral or intranasal delivery. In phase 2 trials, inhaled prochlorperazine shows good pharmacokinetics and efficacy, in contrast to inhaled loxapine that did not provide encouraging results in terms of efficacy. The authors see the potential for the use of dihydroergotamine mesylate in clinical practice pending regulatory approval.

Learn More >

EAN guideline on trigeminal neuralgia.

Trigeminal neuralgia (TN) is an extremely painful condition, which can be difficult to diagnose and treat. In Europe, TN-patients are managed by many different specialities. Therefore, there is a great need for comprehensive European guidelines for management of TN. The European Academy of Neurology asked an expert panel to develop recommendations for a series of questions that are essential for daily clinical management of patients with TN.

Learn More >

Nitroglycerin as a comparative experimental model of migraine pain: from animal to human and back.

Migraine is a disease for which there is still no defined pathophysiological etiology and few translational models. The organic nitrate nitroglycerin has been in use as an experimental model of migraine in both human and animal studies for several years. The drug produces a number of effects within the head, that includes blood vessels, nerves and brain areas that may produce a response similar to a migraine attack in predisposed subjects. A better understanding of the nature of these changes and how well they parallel a true migraine attack would allow for a translational model to better understand some of the mechanisms involved in the generation of a migraine attack. The present review summarizes the known body of knowledge of nitroglycerin effects evaluated in humans and animals as it relates to potential mechanisms associated with migraine headaches.

Learn More >

Effects of CPEB1 in the anterior cingulate cortex on visceral pain in mice.

Patients with irritable bowel syndrome suffer from chronic visceral pain, and in some of them, this is accompanied by anxiety comorbidity. Cytoplasmic polyadenylation element binding protein 1 (CPEB1) mediates the cytoplasmic polyadenylation of mRNAs and facilitates their translation. Our previous studies have shown that CPEB1 knockdown in the amygdala exerts anxiolytic but not analgesic effects in a mouse model of inflammatory pain. However, the roles of CPEB1 in the anterior cingulate cortex (ACC) in visceral pain modulation remain unclear. In this study, a visceral pain mouse model was established by injecting zymosan into the colon of mice. Zymosan injection significantly induced visceral pain- and anxiety-like behaviors in mice and increased the levels of GluA1, phosphorylated GluA1 at S845 and S831, and CPEB1 in the ACC. CPEB1 knockdown in the ACC by AAV-CPEB1-shRNA reduced zymosan-induced pain- and anxiety-like behaviors in mice. This observation was closely correlated with reduced AMPA receptor, synaptophysin, and PSD95 levels. These data suggest that CPEB1 in the ACC is a potential therapeutic target for visceral pain and anxiety comorbidity.

Learn More >

Chronic pain induces nociceptive neurogenesis in dorsal root ganglia from Sox2-positive satellite cells.

Chronic pain is one of the most prevalent chronic diseases in the world. The plastic changes of sensory neurons in dorsal root ganglia (DRG) have been extensively studied as the underlying periphery mechanism. Recent studies revealed that satellite cells, the major glial cells in DRG, also played important roles in the development/modulation of chronic pain. Whether DRG satellite glial cells generate new neurons as their counterparts in enteric nerve ganglia and carotid body do under pathological conditions remains poorly investigated. Here, we report that chronic pain induces proliferation and upregulation of progenitor markers in the sex-determining region Y-box 2 (Sox2)- and platelet-derived growth factor receptor alpha (PDGFRα)-positive satellite glial cells. BrdU incorporation assay revealed the generation of IB4- and CGRP-positive neurons, but not NF200-positive neurons in DRG ipsilateral to injury. Genetic fate tracings showed that PDGFRα-positive cells did not generate neurons, whereas Sox2-positive cells produced both IB4- and CGRP-positive neurons. Interestingly, glial fibrillary acidic protein-positive cells, a subpopulation of Sox2-positive satellites, only gave birth to IB4-positive neurons. Local persistent delivery of tetrodotoxin to the sciatic nerve trunk significantly reduced the pain-induced neurogenesis. Furthermore, patch-clamp studies demonstrated that these glia-derived new neurons could fire action potentials and respond to capsaicin. Taken together, our data demonstrated a chronic pain-induced nociceptive neurogenesis in DRG from Sox2-positive satellite cells, indicating a possible contribution of DRG neurogenesis to the pathology of chronic pain.

Learn More >

Cannabinoids: Current and Future Options to Treat Chronic and Chemotherapy-Induced Neuropathic Pain.

Increases in cancer diagnosis have tremendous negative impacts on patients and their families, and major societal and economic costs. The beneficial effect of chemotherapeutic agents on tumor suppression comes with major unwanted side effects such as weight and hair loss, nausea and vomiting, and neuropathic pain. Chemotherapy-induced peripheral neuropathy (CIPN), which can include both painful and non-painful symptoms, can persist 6 months or longer after the patient's last chemotherapeutic treatment. These peripheral sensory and motor deficits are poorly treated by our current analgesics with limited effectiveness. Therefore, the development of novel treatment strategies is an important preclinical research focus and an urgent need for patients. Approaches to prevent CIPN have yielded disappointing results since these compounds may interfere with the anti-tumor properties of chemotherapeutic agents. Nevertheless, the first (serotonin noradrenaline reuptake inhibitors [SNRIs], anticonvulsants, tricyclic antidepressants) and second (5% lidocaine patches, 8% capsaicin patches and weak opioids such as tramadol) lines of treatment for CIPN have shown some efficacy. The clinical challenge of CIPN management in cancer patients and the need to target novel therapies with long-term efficacy in alleviating CIPN are an ongoing focus of research. The endogenous cannabinoid system has shown great promise and efficacy in alleviating CIPN in preclinical and clinical studies. In this review, we will discuss the mechanisms through which the platinum, taxane, and vinca alkaloid classes of chemotherapeutics may produce CIPN and the potential therapeutic effect of drugs targeting the endocannabinoid system in preclinical and clinical studies, in addition to cannabinoid compounds diffuse mechanisms of action in alleviation of CIPN.

Learn More >

Search