I am a
Home I AM A Search Login

Accepted

Share this

Multiple actions of fenamates and other nonsteroidal anti-inflammatory drugs on GABA receptors.

The nonsteroidal anti-inflammatory drug (NSAID) niflumic acid, a fenamate in structure, has many molecular targets, one of them being specific subtypes of the main inhibitory ligand-gated anion channel, the GABA receptor. Here, we report on the effects of other fenamates and other classes of NSAIDs on brain picrotoxinin-sensitive GABA receptors, using an autoradiographic assay with [S]TBPS as a ligand on mouse brain sections. We found that the other fenamates studied (flufenamic acid, meclofenamic acid, mefenamic acid and tolfenamic acid) affected the autoradiographic signal at low micromolar concentrations in a facilitatory-like allosteric fashion, i.e., without having affinity to the [S]TBPS binding site. Unlike niflumic acid that shows clear preference for inhibiting cerebellar granule cell layer GABA receptors, the other fenamates showed little brain regional selectivity, indicating that their actions are not receptor-subtype selective. Of the non-fenamate NSAIDs studied at 100 μM concentration, diclofenac induced the greatest inhibition of the binding, which is not surprising as it has close structural similarity with the potent fenamate meclofenamic acid. Using two-electrode voltage-clamp assays on Xenopus oocytes, the effect of niflumic acid was found to be dependent on the β subunit variant and the presence of γ2 subunit in rat recombinant α1β and α1βγ2 GABA receptors, with the β1 allowing the niflumic acid inhibition and β3 the stimulation of the receptor-mediated currents. In summary, the fenamate NSAIDs constitute an interesting class of compounds that could be used for development of potent GABA receptor allosteric agonists with other targets to moderate inflammation, pain and associated anxiety/depression.

Learn More >

D2-like receptor agonist synergizes the μ-opioid agonist spinal antinociception in nociceptive, inflammatory and neuropathic models of pain in the rat.

Opioids are potent analgesic drugs, but their use has been limited due to their side effects. Antinociceptive effects of D2-like receptor agonists such as quinpirole have been shown at the spinal cord level; however, their efficacy is not as high as that of opioids. Dopaminergic agonists are long-prescribed and well-tolerated drugs that have been useful to treat clinically and experimentally painful conditions. Because current pain treatments are not completely effective, the aim of this work was to determine if a D2-like receptor agonist improves the antinociceptive effects of a μ-opioid receptor agonist. Drugs were intrathecally administered in adult rats; mechanonociceptive and thermonociceptive tests were carried out. Intraplantar injection of complete Freund's adjuvant (CFA) and sciatic loose ligation (SLL) were used for inflammatory and neuropathic models of pain, respectively. In intact animals, D-Ala2, N-MePhe4, Gly-ol-enkephalin (DAMGO; a µ-opioid receptor agonist) increased the paw withdrawal latencies (PWL) in thermal and mechanical nociceptive tests in a dose-dependent manner. Quinpirole (D2-like receptor agonist) increased PWL only in mechanonociception. In the presence of quinpirole (1 nmol), the ED of the mechanical antinociceptive effect of DAMGO was significantly decreased (8-fold). Coadministration of 1 nmol quinpirole and 30 pmol DAMGO completely reversed hyperalgesia in the CFA model, whereas 100pmol DAMGO plus 1 nmol quinpirole reversed the allodynia in the SLL model. This work offers evidence about a synergistic antinociceptive effect between opioidergic and dopaminergic drugs. This combination may relieve painful conditions resistant to conventional treatments, and it may reduce the adverse effects of chronic opioid administration.

Learn More >

Preoperative Opioids and 1-year Patient reported Outcomes After Spine Surgery.

Longitudinal Cohort Study.

Learn More >

(-)-α-Bisabolol reduces nociception and trigeminal central sensitisation in acute orofacial neuropathic pain induced by infraorbital nerve injury.

Neuropathic orofacial pain conditions represent a challenge to diagnose and treat. Natural substances are promising therapeutic options for the control of pain.

Learn More >

Chemogenetic Silencing of the Locus Coeruleus-Basolateral Amygdala Pathway Abolishes Pain-Induced Anxiety and Enhanced Aversive Learning in Rats.

Pain affects both sensory and emotional aversive responses, often provoking anxiety-related diseases when chronic. However, the neural mechanisms underlying the interactions between anxiety and chronic pain remain unclear.

Learn More >

Pharmacology of JNJ-28583113: A novel TRPM2 antagonist.

Transient receptor potential melastatin type 2 (TRPM2) is a cation channel activated by free intracellular ADP-ribose and reactive oxygen species. TRPM2 signaling has been linked to the pathophysiology of CNS disorders such as neuropathic pain, bipolar disorder and Alzheimer's disease. In this manuscript, we describe the discovery of JNJ-28583113, a potent brain penetrant TRPM2 antagonist. Ca flux assays in cells overexpressing TRPM2 and electrophysiological recordings were used to test the pharmacology of JNJ-28583113. JNJ-28583113 was assayed in vitro on GSK-3 phosphorylation levels, cell death, cytokine release in microglia and unbiased morphological phenotypic analysis. Finally, we dosed animals to evaluate its pharmacokinetic properties. Our results showed that JNJ-28583113 is a potent (126 ± 0.5 nM) TRPM2 antagonist. Blocking TRPM2 caused phosphorylation of GSK3α and β subunits. JNJ-28583113 also protected cells from oxidative stress induced cell death as well as morphological changes induced by non-cytotoxic concentrations of HO. In addition, inhibiting TRPM2 blunted cytokine release in response to pro-inflammatory stimuli in microglia. Lastly, we showed that JNJ-28583113 was brain penetrant but not suitable for systemic dosing as it was rapidly metabolized in vivo. While the in-vitro pharmacology of JNJ-28583113 is the best in class, its in-vivo properties would need optimization to assist in further probing key roles of TRPM2 in CNS pathophysiology.

Learn More >

Alterations in the BDNF-mTOR Signaling Pathway in the Spinal Cord Contribute to Hyperalgesia in a Rodent Model of Chronic Restraint Stress.

Stress is a non-specific, systemic, physiological response of the body to strong internal and external environmental stimuli. Accumulating evidence has suggested that stress, particularly chronic restraint stress (CRS), can reduce pain threshold and increase pain sensitivity. However, pathogenic and therapeutic mechanisms underlying CRS remain unclear. Here, we aimed to investigate roles of the brain-derived neurotrophic factor (BDNF)-mammalian target of rapamycin (mTOR) signaling pathway in CRS-induced abnormal pain sensitivity. CRS was successfully mimicked 7 days after model development, and paw withdrawal mechanical threshold (PWMT) and tail-flick latency (TFL) were evaluated. CRS significantly altered BDNF and mTOR phosphorylation in the anterior cingulate cortex and spinal cord but not in the hippocampus. On day 7, a single dose of 7,8-dihydroxyflavone, an activator of BDNF-tropomyosin receptor kinase B, was administered via intraperitoneal or intrathecal injection. Notably, only the intrathecal injection improved PWMT and TFL. Additionally, an intraperitoneal injection of rapamycin, an mTOR inhibitor, failed to induce any behavioral changes, whereas a single intrathecal injection of rapamycin improved abnormal CRS-induced PWMT and TFL. In conclusion, CRS can induce abnormal pain sensitivity, probably by altering the BDNF-mTOR signaling pathway in the spinal cord.

Learn More >

Is TRPA1 Burning Down TRPV1 as Druggable Target for the Treatment of Chronic Pain?

Over the last decades, a great array of molecular mediators have been identified as potential targets for the treatment of chronic pain. Among these mediators, transient receptor potential (TRP) channel superfamily members have been thoroughly studied. Namely, the nonselective cationic channel, transient receptor potential ankyrin subtype 1 (TRPA1), has been described as a chemical nocisensor involved in noxious cold and mechanical sensation and as rivalling TRPV1, which traditionally has been considered as the most important TRP channel involved in nociceptive transduction. However, few TRPA1-related drugs have succeeded in clinical trials. In the present review, we attempt to discuss the latest data on the topic and future directions for pharmacological intervention.

Learn More >

Chemokine Signaling in Chemotherapy-Induced Neuropathic Pain.

Chemotherapy-induced peripheral neuropathy (CIPN) is a side effect of chemotherapics such as taxanes, vinca alkaloids, and platinum compounds. In recent years, several reports have indicated the involvement of different molecular mechanisms in CIPN. The pathways described so far are diverse and target various components of the peripheral Nervous System (PNS). Among the contributors to neuropathic pain, inflammation has been indicated as a powerful driver of CIPN. Several pieces of evidence have demonstrated a chemotherapy-induced increase in peripheral pro-inflammatory cytokines and a strong correlation with peripheral neuropathy. At present, there are not adequate strategies to prevent CIPN, although there are drugs for treating CIPN, such as duloxetine, that have displayed a moderate effect on CIPN. In this review, we focus on the players involved in CIPN with a particular emphasis on chemokine signaling.

Learn More >

Predicting Functional Effects of Missense Variants in Voltage-Gated Sodium and Calcium Channels.

Learn More >

Search